1Minuit(3) User Contributed Perl Documentation Minuit(3)
2
3
4
6 PDL::Minuit -- a PDL interface to the Minuit library
7
9 This package implements an interface to the Minuit minimization
10 routines (part of the CERN Library)
11
13 A basic fit with Minuit will call three functions in this package.
14 First, a basic initialization is done with mn_init(). Then, the
15 parameters are defined via the function mn_def_pars(), which allows
16 setting upper and lower bounds. Then the function mn_excm() can be used
17 to issue many Minuit commands, including simplex and migrad
18 minimization algorithms (see Minuit manual for more details).
19
20 See the test file minuit.t in the test (t/) directory for a basic
21 example.
22
24 mninit
25 Signature: (int a();int b(); int c())
26
27 info not available
28
29 mninit does not process bad values. It will set the bad-value flag of
30 all output piddles if the flag is set for any of the input piddles.
31
32 mn_abre
33 Signature: (int l(); char* nombre; char* mode)
34
35 info not available
36
37 mn_abre does not process bad values. It will set the bad-value flag of
38 all output piddles if the flag is set for any of the input piddles.
39
40 mn_cierra
41 Signature: (int l())
42
43 info not available
44
45 mn_cierra does not process bad values. It will set the bad-value flag
46 of all output piddles if the flag is set for any of the input piddles.
47
48 mnparm
49 Signature: (int a(); double b(); double c(); double d(); double e(); int [o] ia(); char* str)
50
51 info not available
52
53 mnparm does not process bad values. It will set the bad-value flag of
54 all output piddles if the flag is set for any of the input piddles.
55
56 mnexcm
57 Signature: (double a(n); int ia(); int [o] ib(); char* str; SV* function; int numelem)
58
59 info not available
60
61 mnexcm does not process bad values. It will set the bad-value flag of
62 all output piddles if the flag is set for any of the input piddles.
63
64 mnpout
65 Signature: (int ia(); double [o] a(); double [o] b(); double [o] c(); double [o] d();int [o] ib(); SV* str)
66
67 info not available
68
69 mnpout does not process bad values. It will set the bad-value flag of
70 all output piddles if the flag is set for any of the input piddles.
71
72 mnstat
73 Signature: (double [o] a(); double [o] b(); double [o] c(); int [o] ia(); int [o] ib(); int [o] ic())
74
75 info not available
76
77 mnstat does not process bad values. It will set the bad-value flag of
78 all output piddles if the flag is set for any of the input piddles.
79
80 mnemat
81 Signature: (double [o] mat(n,n))
82
83 info not available
84
85 mnemat does not process bad values. It will set the bad-value flag of
86 all output piddles if the flag is set for any of the input piddles.
87
88 mnerrs
89 Signature: (int ia(); double [o] a(); double [o] b(); double [o] c(); double [o] d())
90
91 info not available
92
93 mnerrs does not process bad values. It will set the bad-value flag of
94 all output piddles if the flag is set for any of the input piddles.
95
96 mncont
97 Signature: (int ia(); int ib(); int ic(); double [o] a(n); double [o] b(n); int [o] id(); SV* function; int numelem)
98
99 info not available
100
101 mncont does not process bad values. It will set the bad-value flag of
102 all output piddles if the flag is set for any of the input piddles.
103
104 mn_init()
105 The function mn_init() does the basic initialization of the fit. The
106 first argument has to be a reference to the function to be minimized.
107 The function to be minimized has to receive five arguments
108 ($npar,$grad,$fval,$xval,$iflag). The first is the number of parameters
109 currently variable. The second is the gradient of the function (which
110 is not necessarily used, see the Minuit documentation). The third is
111 the current value of the function. The fourth is a piddle with the
112 values of the parameters. The fifth is an integer flag, which
113 indicates what the function is supposed to calculate. The function has
114 to return the values ($fval,$grad), the function value and the
115 function gradient.
116
117 There are three optional arguments to mn_init(). By default, the output
118 of Minuit will come through STDOUT unless a filename $logfile is given
119 in the Log option. Note that this will mercilessly erase $logfile if it
120 already exists. Additionally, a title can be given to the fit by the
121 Title option, the default is 'Minuit Fit'. If the output is written to
122 a logfile, this is assigned Fortran unit number 88. If for whatever
123 reason you want to have control over the unit number that Fortran
124 associates to the logfile, you can pass the number through the Unit
125 option.
126
127 Usage:
128
129 mn_init($function_ref,{Log=>$logfile,Title=>$title,Unit=>$unit})
130
131 Example:
132
133 mn_init(\&my_function);
134
135 #same as above but outputting to a file 'log.out'.
136 #title for fit is 'My fit'
137 mn_init(\&my_function,
138 {Log => 'log.out', Title => 'My fit'});
139
140
141 sub my_function{
142 # the five variables input to the function to be minimized
143 # xval is a piddle containing the current values of the parameters
144 my ($npar,$grad,$fval,$xval,$iflag) = @_;
145
146
147 # Here is code computing the value of the function
148 # and potentially also its gradient
149 # ......
150
151 # return the two variables. If no gradient is being computed
152 # just return the $grad that came as input
153 return ($fval, $grad);
154 }
155
156 mn_def_pars()
157 The function mn_def_pars() defines the initial values of the parameters
158 of the function to be minimized and the value of the initial steps
159 around these values that the minimizer will use for the first
160 variations of the parameters in the search for the minimum. There are
161 several optional arguments. One allows assigning names to these
162 parameters which otherwise get names (Par_0, Par_1,....,Par_n) by
163 default. Another two arguments can give lower and upper bounds for the
164 parameters via two piddles. If the lower and upper bound for a given
165 parameter are both equal to 0 then the parameter is unbound. By default
166 these lower and upper bound piddles are set to zeroes(n), where n is
167 the number of parameters, i.e. the parameters are unbound by default.
168
169 The function needs two input variables: a piddle giving the initial
170 values of the parameters and another piddle giving the initial steps.
171 An optional reference to a perl array with the variable names can be
172 passed, as well as piddles with upper and lower bounds for the
173 parameters (see example below).
174
175 It returns an integer variable which is 0 upon success.
176
177 Usage:
178
179 $iflag = mn_def_pars($pars, $steps,{Names => \@names,
180 Lower_bounds => $lbounds,
181 Upper_bounds => $ubounds})
182
183 Example:
184
185 #initial parameter values
186 my $pars = pdl(2.5,3.0);
187
188 #steps
189 my $steps = pdl(0.3,0.5);
190
191 #parameter names
192 my @names = ('intercept','slope');
193
194 #use mn_def_pars with default parameter names (Par_0,Par_1,...)
195 my $iflag = mn_def_pars($pars,$steps);
196
197 #use of mn_def_pars explicitly specify parameter names
198 $iflag = mn_def_pars($pars,$steps,{Names => \@names});
199
200 # specify lower and upper bounds for the parameters.
201 # The example below leaves parameter 1 (intercept) unconstrained
202 # and constrains parameter 2 (slope) to be between 0 and 100
203 my $lbounds = pdl(0, 0);
204 my $ubounds = pdl(0, 100);
205
206 $iflag = mn_def_pars($pars,$steps,{Names => \@names,
207 Lower_bounds => $lbounds,
208 Upper_bounds => $ubounds}});
209
210 #same as above because $lbounds is by default zeroes(n)
211 $iflag = mn_def_pars($pars,$steps,{Names => \@names,
212 Upper_bounds => $ubounds}});
213
214 mn_excm()
215 The function mn_excm() executes a Minuit command passed as a string.
216 The first argument is the command string and an optional second
217 argument is a piddle with arguments to the command. The available
218 commands are listed in Chapter 4 of the Minuit manual (see url below).
219
220 It returns an integer variable which is 0 upon success.
221
222 Usage:
223
224 $iflag = mn_excm($command_string, {$arglis})
225
226 Example:
227
228 #start a simplex minimization
229 my $iflag = mn_excm('simplex');
230
231 #same as above but specify the maximum allowed numbers of
232 #function calls in the minimization
233 my $arglist = pdl(1000);
234 $iflag = mn_excm('simplex',$arglist);
235
236 #start a migrad minimization
237 $iflag = mn_excm('migrad')
238
239 #set Minuit strategy in order to get the most reliable results
240 $arglist = pdl(2)
241 $iflag = mn_excm('set strategy',$arglist);
242
243 # each command can be specified by a minimal string that uniquely
244 # identifies it (see Chapter 4 of Minuit manual). The comannd above
245 # is equivalent to:
246 $iflag = mn_excm('set stra',$arglis);
247
248 mn_pout()
249 The function mn_pout() gets the current value of a parameter. It takes
250 as input the parameter number and returns an array with the parameter
251 value, the current estimate of its uncertainty (0 if parameter is
252 constant), lower bound on the parameter, if any (otherwise 0), upper
253 bound on the parameter, if any (otherwise 0), integer flag (which is
254 equal to the parameter number if variable, zero if the parameter is
255 constant and negative if parameter is not defined) and the parameter
256 name.
257
258 Usage:
259
260 ($val,$err,$bnd1,$bnd2,$ivarbl,$par_name) = mn_pout($par_number);
261
262 mn_stat()
263 The function mn_stat() gets the current status of the minimization. It
264 returns an array with the best function value found so far, the
265 estimated vertical distance remaining to minimum, the value of UP
266 defining parameter uncertainties (default is 1), the number of
267 currently variable parameters, the highest parameter defined and an
268 integer flag indicating how good the covariance matrix is (0=not
269 calculated at all; 1=diagonal approximation, not accurate; 2=full
270 matrix, but forced positive definite; 3=full accurate matrix)
271
272 Usage:
273
274 ($fmin,$fedm,$errdef,$npari,$nparx,$istat) = mn_stat();
275
276 mn_emat()
277 The function mn_emat returns the covariance matrix as a piddle.
278
279 Usage:
280
281 $emat = mn_emat();
282
283 mn_err()
284 The function mn_err() returns the current existing values for the error
285 in the fitted parameters. It returns an array with the positive error,
286 the negative error, the "parabolic" parameter error from the error
287 matrix and the global correlation coefficient, which is a number
288 between 0 and 1 which gives the correlation between the requested
289 parameter and that linear combination of all other parameters which is
290 most strongly correlated with it. Unless the command 'MINOS' has been
291 issued via the function mn_excm(), the first three values will be
292 equal.
293
294 Usage:
295
296 ($eplus,$eminus,$eparab,$globcc) = mn_err($par_number);
297
298 mn_contour()
299 The function mn_contour() finds contours of the function being
300 minimized with respect to two chosen parameters. The contour level is
301 given by F_min + UP, where F_min is the minimum of the function and UP
302 is the ERRordef specified by the user, or 1.0 by default (see Minuit
303 manual). The contour calculated by this function is dynamic, in the
304 sense that it represents the minimum of the function being minimized
305 with respect to all the other NPAR-2 parameters (if any).
306
307 The function takes as input the parameter numbers with respect to which
308 the contour is to be determined (two) and the number of points $npt
309 required on the contour (>4). It returns an array with piddles
310 $xpt,$ypt containing the coordinates of the contour and a variable
311 $nfound indicating the number of points actually found in the contour.
312 If all goes well $nfound will be equal to $npt, but it can be negative
313 if the input arguments are not valid, zero if less than four points
314 have been found or <$npt if the program could not find $npt points.
315
316 Usage:
317
318 ($xpt,$ypt,$nfound) = mn_contour($par_number_1,$par_number_2,$npt)
319
321 PDL
322
323 The Minuit documentation is online at
324
325 http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html
326
328 This file copyright (C) 2007 Andres Jordan <ajordan@eso.org>. All
329 rights reserved. There is no warranty. You are allowed to redistribute
330 this software/documentation under certain conditions. For details, see
331 the file COPYING in the PDL distribution. If this file is separated
332 from the PDL distribution, the copyright notice should be included in
333 the file.
334
335
336
337perl v5.30.2 2020-04-02 Minuit(3)