1MPSOLVE(1) User Commands MPSOLVE(1)
2
3
4
6 MPSolve - A multiprecision polynomial rootfinder
7
9 mpsolve [-a alg] [-b] [-c] [-G goal] [-o digits] [-i digits] [-j n] [-t
10 type] [-S set] [-D detect] [-O format] [-l filename] [-x] [-d] [-v]
11 [-r] [infile | -p poly]
12
14 -a alg Select the algorithm used to solve the polynomial/secular equa‐
15 tion:
16
17 u: Classic unisolve algorithm (Aberth iterations and dynamic
18 precision)
19 s: Secular algorithm, using regeneration of increasingly bet‐
20 ter-conditioned
21
22 secular equations with the same roots of the polynomial
23
24 -b Perform Aberth iterations in Jacobi-style instead of Gauss-Sei‐
25 del
26
27 -c Enable crude approximation mode
28
29 -G goal
30 Select the goal to reach. Possible values are:
31
32 a: Approximate the roots
33 i: Isolate the roots
34 c: Count the roots in the search set
35
36 -o digits
37 Number of guaranteed digits of the roots
38
39 -i digits
40 Digits of precision of the input coefficients
41
42 -j n Number of threads to spawn as workers
43
44 -t type
45 Type can be 'f' for floating point or 'd' for DPE
46
47 -S set Restrict the search set for the roots set can be one of:
48
49 u: upper half-plane { x | Im(x) > 0 }
50 d: lower half-plane { x | Im(x) < 0 }
51 l: left half-plane { x | Re(x) < 0 }
52 r: right half-plane { x | Re(x) > 0 }
53 i: inside the unit circle: { x | |x| < 1 }
54 o: outside the unit circle { x | |x| > 1 }
55 R: real axis { x | Im(x) = 0 }
56 I: imaginary axis { x | Re(x) = 0 }
57
58 -D detect
59 Detect properties of the roots:
60
61 r: real roots
62 i: imaginary roots
63 b: both
64
65 -O format
66 Select format for output:
67
68 f: full output
69 b: bare output
70 c: compact output
71 v: verbose output
72 g: gnuplot-ready output
73 gf: gnuplot-full mode, can be piped to gnuplot and display error
74 bars.
75 gp: The same as gf but only with points (suitable for high
76 degree polynomials)
77
78 For example:
79
80 mpsolve -as -Ogf myfile.pol | gnuplot
81
82 -l filename Set filename as the output for the log, instead of the tty.
83 Use this option with
84
85 -d[domains] to activate the desired debug domains.
86
87 -x Enable graphic visualization of convergence
88
89 -d[domains] Activate debug on selected domains, that can be one of:
90
91 t: trace
92 a: approximation
93 c: cluster
94 i: improvement
95 w: timings
96 o: input/Output
97 m: memory management
98 f: function calls
99 p: debug stop condition and development of iteration packets
100 r: regeneration Example: -dfi for function calls and improvement
101
102 -p poly
103 Solve the polynomial specified on the command line.
104
105 For example: mpsolve -p "x^4-6x^9+6/7x + 5"
106
107 -r Use a recursive strategy to dispose the initial approximations.
108 This option is available only for monomial polynomials.
109 Note: this option is considered experimental.
110
111 -v Print the version and exit
112
114 The full documentation for MPSolve is maintained as a Texinfo manual.
115 If the info and MPSolve programs are properly installed at your site,
116 the command
117
118 info MPSolve
119
120 should give you access to the complete manual.
121
122
123
124MPSolve 3.2.1 March 2013 MPSOLVE(1)