1MPSOLVE(1)                       User Commands                      MPSOLVE(1)
2
3
4

NAME

6       MPSolve - A multiprecision polynomial rootfinder
7

DESCRIPTION

9       mpsolve [-a alg] [-b] [-c] [-G goal] [-o digits] [-i digits] [-j n] [-t
10       type] [-S set] [-D detect] [-O format] [-l  filename]  [-x]  [-d]  [-v]
11       [-r] [infile | -p poly]
12

OPTIONS

14       -a alg Select  the algorithm used to solve the polynomial/secular equa‐
15              tion:
16
17              u: Classic unisolve algorithm  (Aberth  iterations  and  dynamic
18              precision)
19              s:  Secular  algorithm,  using regeneration of increasingly bet‐
20              ter-conditioned
21
22              secular equations with the same roots of the polynomial
23
24       -b     Perform Aberth iterations in Jacobi-style instead of  Gauss-Sei‐
25              del
26
27       -c     Enable crude approximation mode
28
29       -G goal
30              Select the goal to reach. Possible values are:
31
32              a: Approximate the roots
33              i: Isolate the roots
34              c: Count the roots in the search set
35
36       -o digits
37              Number of guaranteed digits of the roots
38
39       -i digits
40              Digits of precision of the input coefficients
41
42       -j n   Number of threads to spawn as workers
43
44       -t type
45              Type can be 'f' for floating point or 'd' for DPE
46
47       -S set Restrict the search set for the roots set can be one of:
48
49              u: upper half-plane { x | Im(x) > 0 }
50              d: lower half-plane { x | Im(x) < 0 }
51              l: left half-plane { x | Re(x) < 0 }
52              r: right half-plane { x | Re(x) > 0 }
53              i: inside the unit circle: { x | |x| < 1 }
54              o: outside the unit circle { x | |x| > 1 }
55              R: real axis { x | Im(x) = 0 }
56              I: imaginary axis { x | Re(x) = 0 }
57
58       -D detect
59              Detect properties of the roots:
60
61              r: real roots
62              i: imaginary roots
63              b: both
64
65       -O format
66              Select format for output:
67
68              f: full output
69              b: bare output
70              c: compact output
71              v: verbose output
72              g: gnuplot-ready output
73              gf: gnuplot-full mode, can be piped to gnuplot and display error
74              bars.
75              gp: The same as gf but  only  with  points  (suitable  for  high
76              degree polynomials)
77
78              For example:
79
80              mpsolve -as -Ogf myfile.pol | gnuplot
81
82       -l filename Set filename as the output for the log, instead of the tty.
83              Use this option with
84
85              -d[domains] to activate the desired debug domains.
86
87       -x     Enable graphic visualization of convergence
88
89       -d[domains] Activate debug on selected domains, that can be one of:
90
91              t: trace
92              a: approximation
93              c: cluster
94              i: improvement
95              w: timings
96              o: input/Output
97              m: memory management
98              f: function calls
99              p: debug stop condition and development of iteration packets
100              r: regeneration Example: -dfi for function calls and improvement
101
102       -p poly
103              Solve the polynomial specified on the command line.
104
105              For example: mpsolve -p "x^4-6x^9+6/7x + 5"
106
107       -r     Use a recursive strategy to dispose the initial approximations.
108              This option is available only for monomial polynomials.
109              Note: this option is considered experimental.
110
111       -v     Print the version and exit
112

SEE ALSO

114       The full documentation for MPSolve is maintained as a  Texinfo  manual.
115       If  the  info and MPSolve programs are properly installed at your site,
116       the command
117
118              info MPSolve
119
120       should give you access to the complete manual.
121
122
123
124MPSolve 3.2.1                     March 2013                        MPSOLVE(1)
Impressum