1r.topmodel(1) GRASS GIS User's Manual r.topmodel(1)
2
3
4
6 r.topmodel - Simulates TOPMODEL which is a physically based hydrologic
7 model.
8
10 raster, hydrology, model
11
13 r.topmodel
14 r.topmodel --help
15 r.topmodel [-p] parameters=name topidxstats=name input=name output=name
16 [timestep=integer] [topidxclass=integer] [topidx=name] [ntopidx‐
17 classes=integer] [outtopidxstats=name] [--overwrite] [--help]
18 [--verbose] [--quiet] [--ui]
19
20 Flags:
21 -p
22 Preprocess only and stop after generating outtopidxstats
23
24 --overwrite
25 Allow output files to overwrite existing files
26
27 --help
28 Print usage summary
29
30 --verbose
31 Verbose module output
32
33 --quiet
34 Quiet module output
35
36 --ui
37 Force launching GUI dialog
38
39 Parameters:
40 parameters=name [required]
41 Name of input TOPMODEL parameters file
42
43 topidxstats=name [required]
44 Name of input topographic index statistics file
45
46 input=name [required]
47 Name of input rainfall and potential evapotranspiration data file
48
49 output=name [required]
50 Name for output file
51
52 timestep=integer
53 Time step
54 Generate output for this time step
55
56 topidxclass=integer
57 Topographic index class
58 Generate output for this topographic index class
59
60 topidx=name
61 Name of input topographic index raster map
62 Must be clipped to the catchment boundary. Used for generating out‐
63 topidxstats
64
65 ntopidxclasses=integer
66 Number of topographic index classes
67 Used for generating outtopidxstats
68 Default: 30
69
70 outtopidxstats=name
71 Name for output topographic index statistics file
72 Requires topidx and ntopidxclasses
73
75 r.topmodel simulates TOPMODEL which is a physically based hydrologic
76 model.
77
78 Parameters description
79 parameters
80 This file contains TOPMODEL parameters that describe the study
81 area. Any lines starting with a # sign or empty lines are ignored.
82 # Subcatchment name
83 Subcatchment 1
84 ################################################################################
85 # A [m^2]: Total subcatchment area
86 3.31697E+07
87 ################################################################################
88 # qs0 [m/h]: Initial subsurface flow per unit area
89 # "The first streamflow input is assumed to represent
90 # only the subsurface flow contribution in the watershed."
91 # - Liaw (1988)
92 0.000075
93 # lnTe [ln(m^2/h)]: Areal average of the soil surface transmissivity
94 4.
95 # m [m]: Parameter controlling the decline rate of transmissivity
96 # See Beven and Kirkby (1979)
97 0.0125
98 # Sr0 [m]: Initial root zone storage deficit
99 0.0025
100 # Srmax [m]: Maximum root zone storage deficit
101 0.041
102 # td [h]: Unsaturated zone time delay per unit storage deficit if greater than 0
103 # OR
104 # -alpha: Effective vertical hydraulic gradient if not greater than 0.
105 #
106 # For example, -10 means alpha=10.
107 60.
108 # vch [m/h]: Main channel routing velocity
109 20000.
110 # vr [m/h]: Internal subcatchment routing velocity
111 10000.
112 ################################################################################
113 # infex: Calculate infiltration excess if not zero (integer)
114 0
115 # K0 [m/h]: Surface hydraulic conductivity
116 2.
117 # psi [m]: Wetting front suction
118 0.1
119 # dtheta: Water content change across the wetting front
120 0.1
121 ################################################################################
122 # d [m]: Distance from the catchment outlet
123 # The first value should be the mainstream distance from
124 # the subcatchment outlet to the catchment outlet.
125 # Ad_r: Cumulative area ratio of subcatchment (0.0 to 1.0)
126 # The first and last values should be 0 and 1, respectively.
127 # d Ad_r
128 0 0.0
129 1000 0.2
130 2000 0.4
131 3000 0.6
132 4000 0.8
133 5000 1.0
134
135 input
136
137
138 This file contains observed weather data.
139 # dt [h]: Time step
140 24
141 ################################################################################
142 # R [m/dt]: Rainfall
143 # Ep [m/dt]: Potential evapotranspiration
144 # R Ep
145 0.000033 0.000000
146 0.000053 0.011938
147 0.004821 0.000000
148 .
149 .
150 .
151
152 timestep
153 If a time step is specified, output will be generated for the spe‐
154 cific time step in addition to the summary and total flows at the
155 outlet. This parameter can be combined with topidxclass to specify
156 a time step and topographic index class at the same time. If no
157 topidxclass is given, output will be generated for all the topo‐
158 graphic index classes.
159
160 toptopidxclass
161 If a topographic index class is specified, output will be generated
162 for the given topographic index class. This parameter can be com‐
163 bined with timestep. If no timestep is given, output will be gener‐
164 ated for all the time steps.
165
166 topidx, ntoptopidxclasses, outtoptopidxstats
167 The topidx map can optionally be used for creating a new topo‐
168 graphic index statistics file. This map has to be already clipped
169 to the catchment boundary. The entire range of topographic index
170 values will be divided into ntoptopidxclasses and the area ratio of
171 each class will be reported in the outtoptopidxstats file. These
172 three parameters can be omitted unless a new topidxstats file needs
173 to be created.
174
176 · Beven, K. J., 1984. Infiltration into a class of vertically
177 non-uniform soils. Hydrological Sciences Journal 29 (4),
178 425-434.
179
180 · Beven, K. J., Kirkby, M. J., 1979. A physically based, variable
181 contributing area model of basin hydrology. Hydrological Sci‐
182 ences Bulletin 24 (1), 43-69.
183
184 · Beven K. J., R. Lamb, P. Quinn, R. Romanowicz, and J. Freer,
185 1995. TOPMODEL, in V.P. Singh (Ed.). Computer Models of Water‐
186 shed Hydrology. Water Resources Publications.
187
188 · Cho, H., 2000. GIS Hydrological Modeling System by Using Pro‐
189 gramming Interface of GRASS. Master’s Thesis, Department of
190 Civil Engineering, Kyungpook National University, Korea.
191
192 · Liaw, S. C., 1988. Streamflow Simulation Using a Physically
193 Based Hydrologic Model in Humid Forested Watersheds. Disserta‐
194 tion, Colorado State University, CO. p163.
195
196 · Morel-Seytoux, H. J., Khanji, J., 1974. Derivation of an equa‐
197 tion of infiltration. Water Resources Research 10 (4), 795-800.
198
200 r.fill.dir, r.mapcalc, r.topidx
201 How to run r.topmodel
202
204 Huidae Cho, Hydro Laboratory, Kyungpook National University, South
205 Korea
206
207 Based on TMOD9502.FOR by Keith Beven.
208
210 Available at: r.topmodel source code (history)
211
212 Main index | Raster index | Topics index | Keywords index | Graphical
213 index | Full index
214
215 © 2003-2020 GRASS Development Team, GRASS GIS 7.8.5 Reference Manual
216
217
218
219GRASS 7.8.5 r.topmodel(1)