1c_csa3s(3NCARG) NCAR GRAPHICS c_csa3s(3NCARG)
2
3
4
6 c_csa3s - cubic spline approximation, simple entry for three-dimen‐
7 sional input, gridded output
8
10 float *c_csa3s(int, float [], float [], float [], float [], int [], int, int,
11 int, float [], float [], float [], int *);
12
13
15 float *c_csa3s (int n, float xi[], float yi[], float zi[],
16 float ui[], int knots[3], int nxo, int nyo,
17 int nzo, float xo[], float yo[], float zo[],
18 int *ier);
19
20
22 n (integer,input) The number of input data points. It must be
23 that n is greater than 3 and, depending on the size of
24 knots below, n may have to be larger.
25
26 xi (real, input) An array dimensioned for n containing the X
27 coordinate values for the input function.
28
29 yi (real, input) An array dimensioned for n containing the Y
30 coordinate values for the input function.
31
32 zi (real, input) An array dimensioned for n containing the Z
33 coordinate values for the input function.
34
35 ui (real, input) An array containing the functional values of
36 the input function -- ui[k] is the functional value at
37 (xi[k], yi[k], zi[k]) for k=0,n-1.
38
39 knots (integer, input) The number of knots to be used in con‐
40 structing the approximation spline. knots[0], knots[1] and
41 knots[2] must each be at least 4. The larger the value for
42 knots, the closer the approximated curve will come to pass‐
43 ing through the input function values.
44
45 nxo (integer, input) The number of X coordinate values to be
46 calculated for the output surface.
47
48 nyo (integer, input) The number of Y coordinate values to be
49 calculated for the output surface.
50
51 nzo The number of Z coordinate values to be calculated for the
52 output grid.
53
54 xo (real, input) An array dimensioned for nxo containing the X
55 coordinates of the output grid.
56
57 yo (real, output) An array dimensioned for nyo containing the
58 Y coordinates of the output grid.
59
60 zo (real, output) An array dimensioned for nzo containing the
61 Z coordinates of the output grid.
62
63 ier (pointer to integer, output) An error return value. If
64 *ier is returned as 0, then no errors were detected. If
65 *ier is non-zero, then refer to the error list in the error
66 table for details.
67
69 c_csa3s is called to find an approximating cubic spline for three-
70 dimensional input data. If you want to weight the input data values,
71 calculate derivatives, or handle data sparse areas specially, then you
72 will need to use c_csa3xs.
73
74 c_csa3s returns a pointer to a linear array of data that is the approx‐
75 imation spline stored in row-major order. That is, if out is declared
76 as
77
78 float *out;
79
80 and we set:
81
82 out = c_csa3s(n, x, y, z, u, nx, ny, nz, xo, yo, zo, &ier);
83
84 then out[nz*ny*i + nz*j + k] is the approximation function value at
85 coordinate point (xo[i], yo[j], zo[k]) for 0 <= i < nx, 0 <= j < ny,
86 and 0 <= k < nz. The space for out is allocated internal to c_csa3s and
87 is nx*ny*nz floats in size.
88
90 To use c_csa3s, load the NCAR Graphics library ngmath.
91
93 csagrid, c_csa3xs, c_csa3ls, c_csa3lxs
94
95 Complete documentation for Csagrid is available at URL
96 http://ngwww.ucar.edu/ngdoc/ng/ngmath/csagrid/csahome.html
97
99 Copyright (C) 2000
100 University Corporation for Atmospheric Research
101
102 The use of this Software is governed by a License Agreement.
103
104
105
106UNIX January 1999 c_csa3s(3NCARG)