1c_ftcurvs(3NCARG)                NCAR GRAPHICS               c_ftcurvs(3NCARG)
2
3
4

NAME

6       c_ftcurvs - compute a smoothing spline
7

FUNCTION PROTOTYPE

9       int  c_ftcurvs  (int, float [], float [], int, float [], int, float [],
10       float []);
11

SYNOPSIS

13       int c_ftcurvs (n, xi, yi, dflg, d, m, xo, yo);
14

DESCRIPTION

16       n           The number of input data points. (n > 1)
17
18       xi          An array containing the abscissae for the input function.
19
20       yi          An array containing the  functional  values  of  the  input
21                   function  (yi[k]  is  the  functional  value  at  x[k]  for
22                   k=0,n-1).
23
24       dflg        A switch for interpreting the  value  of  d  (as  described
25                   below).   If  dflg=0,  then  d  is an array of length n (an
26                   error estimate for each input data value); if dflg=1,  then
27                   d  is  a  scalar that serves as an error estimate for every
28                   single data item.
29
30       d           A user-specified value containing the observed  weights.  d
31                   may  either be an array or a scalar, depending on the value
32                   of dflg.
33
34       m           The number of output values.
35
36       xo          Contains the abscissae for the output values.
37
38       yo          Contains the functional values  for  the  smoothing  spline
39                   ((yo[k] is the functional value at xo[k] for k=0,n-1).
40

RETURN VALUE

42       c_ftcurvs returns an error value as per:
43
44       = 1 if n is less than 2.
45       = 2 if smt is negative.
46       = 3 if eps is negative or greater than 1.
47       = 4 if x values are not strictly increasing.
48       = 5 if d is negative.
49

USAGE

51       This  function computes an interpolatory smoothing spline under tension
52       through a sequence of functional values.
53
54       Two parameters and one function argument used to control the degree  of
55       smoothness -- the parameters are smt, and eps and the function argument
56       is d.
57
58       The argument d is a value indicating the degree of  confidence  in  the
59       accuracy  of the input function values -- it should be an approximation
60       of the standard deviation of error. Effectively the value of d controls
61       how  close  the smoothed curve comes to the input data points.  If d is
62       small, then the interpolated curve will pass close to the  input  data.
63       The larger the value of d, the more freedom the smooth curve has in how
64       close it comes to the input data values.
65
66       The parameter smt is a more subtle global smoothing parameter; smt must
67       be  non-negative.  For  small values of smt, the curve approximates the
68       tension spline and for larger values of smt, the curve is  smoother.  A
69       reasonable value for smt is (float) n.
70
71       The  parameter  eps controls the precision to which smt is interpreted;
72       eps must be between 0. and 1. inclusive. A  reasonable  value  for  eps
73       sqrt( 2./(float) n ).
74
75       c_ftcurvs is called after all of the desired values for control parameā€
76       ters have been set using the procedures c_ftseti,  c_ftsetr,  c_ftsetc.
77       Control parameters that apply to c_ftcurvs are: sig, smt, eps, sf2.
78
79       The  value  for the parameter sig specifies the tension factor.  Values
80       near zero result in a cubic spline; large values (e.g.  50)  result  in
81       nearly a polygonal line. A typical value is 1. (the default).
82

ACCESS

84       To use c_ftcurvs, load the NCAR Graphics library ngmath.
85

SEE ALSO

87       fitgrid_params, c_ftseti, c_ftsetr, c_ftsetc.
88
89       Complete documentation for Fitgrid is available at URL
90       http://ngwww.ucar.edu/ngdoc/ng/ngmath/fitgrid/fithome.html
91
93       Copyright (C) 2000
94       University Corporation for Atmospheric Research
95
96       The use of this Software is governed by a License Agreement.
97
98
99
100UNIX                              March 1998                 c_ftcurvs(3NCARG)
Impressum