1REMAINDER(3P)              POSIX Programmer's Manual             REMAINDER(3P)
2
3
4

PROLOG

6       This  manual  page is part of the POSIX Programmer's Manual.  The Linux
7       implementation of this interface may differ (consult the  corresponding
8       Linux  manual page for details of Linux behavior), or the interface may
9       not be implemented on Linux.
10

NAME

12       remainder, remainderf, remainderl — remainder function
13

SYNOPSIS

15       #include <math.h>
16
17       double remainder(double x, double y);
18       float remainderf(float x, float y);
19       long double remainderl(long double x, long double y);
20

DESCRIPTION

22       The functionality described on this reference page is aligned with  the
23       ISO C  standard.  Any  conflict between the requirements described here
24       and the ISO C standard is unintentional. This  volume  of  POSIX.1‐2017
25       defers to the ISO C standard.
26
27       These functions shall return the floating-point remainder r=x-ny when y
28       is non-zero. The value n is the integral value nearest the exact  value
29       x/y.  When |n-x/y|=½, the value n is chosen to be even.
30
31       The behavior of remainder() shall be independent of the rounding mode.
32

RETURN VALUE

34       Upon  successful completion, these functions shall return the floating-
35       point remainder r=x-ny when y is non-zero.
36
37       On systems that do not support the IEC 60559 Floating-Point option,  if
38       y  is  zero, it is implementation-defined whether a domain error occurs
39       or zero is returned.
40
41       If x or y is NaN, a NaN shall be returned.
42
43       If x is infinite or y is 0 and the other is  non-NaN,  a  domain  error
44       shall occur, and a NaN shall be returned.
45

ERRORS

47       These functions shall fail if:
48
49       Domain Error
50                   The  x  argument  is  ±Inf, or the y argument is ±0 and the
51                   other argument is non-NaN.
52
53                   If the integer expression (math_errhandling  &  MATH_ERRNO)
54                   is  non-zero,  then  errno  shall be set to [EDOM].  If the
55                   integer expression (math_errhandling &  MATH_ERREXCEPT)  is
56                   non-zero,  then  the invalid floating-point exception shall
57                   be raised.
58
59       These functions may fail if:
60
61       Domain Error
62                   The y argument is zero.
63
64                   If the integer expression (math_errhandling  &  MATH_ERRNO)
65                   is  non-zero,  then  errno  shall be set to [EDOM].  If the
66                   integer expression (math_errhandling &  MATH_ERREXCEPT)  is
67                   non-zero,  then  the invalid floating-point exception shall
68                   be raised.
69
70       The following sections are informative.
71

EXAMPLES

73       None.
74

APPLICATION USAGE

76       On  error,  the  expressions  (math_errhandling   &   MATH_ERRNO)   and
77       (math_errhandling  & MATH_ERREXCEPT) are independent of each other, but
78       at least one of them must be non-zero.
79

RATIONALE

81       None.
82

FUTURE DIRECTIONS

84       None.
85

SEE ALSO

87       abs(), div(), feclearexcept(), fetestexcept(), ldiv()
88
89       The Base Definitions volume of POSIX.1‐2017, Section 4.20, Treatment of
90       Error Conditions for Mathematical Functions, <math.h>
91
93       Portions  of  this text are reprinted and reproduced in electronic form
94       from IEEE Std 1003.1-2017, Standard for Information Technology --  Por‐
95       table  Operating System Interface (POSIX), The Open Group Base Specifi‐
96       cations Issue 7, 2018 Edition, Copyright (C) 2018 by the  Institute  of
97       Electrical  and  Electronics Engineers, Inc and The Open Group.  In the
98       event of any discrepancy between this version and the original IEEE and
99       The  Open Group Standard, the original IEEE and The Open Group Standard
100       is the referee document. The original Standard can be  obtained  online
101       at http://www.opengroup.org/unix/online.html .
102
103       Any  typographical  or  formatting  errors that appear in this page are
104       most likely to have been introduced during the conversion of the source
105       files  to  man page format. To report such errors, see https://www.ker
106       nel.org/doc/man-pages/reporting_bugs.html .
107
108
109
110IEEE/The Open Group                  2017                        REMAINDER(3P)
Impressum