1FFI::Platypus(3)      User Contributed Perl Documentation     FFI::Platypus(3)
2
3
4

NAME

6       FFI::Platypus - Write Perl bindings to non-Perl libraries with FFI. No
7       XS required.
8

VERSION

10       version 1.58
11

SYNOPSIS

13        use FFI::Platypus 1.00;
14
15        # for all new code you should use api => 1
16        my $ffi = FFI::Platypus->new( api => 1 );
17        $ffi->lib(undef); # search libc
18
19        # call dynamically
20        $ffi->function( puts => ['string'] => 'int' )->call("hello world");
21
22        # attach as a xsub and call (much faster)
23        $ffi->attach( puts => ['string'] => 'int' );
24        puts("hello world");
25

DESCRIPTION

27       Platypus is a library for creating interfaces to machine code libraries
28       written in languages like C, C++, Go, Fortran, Rust, Pascal.
29       Essentially anything that gets compiled into machine code.  This
30       implementation uses libffi <https://sourceware.org/libffi/> to
31       accomplish this task.  libffi <https://sourceware.org/libffi/> is
32       battle tested by a number of other scripting and virtual machine
33       languages, such as Python and Ruby to serve a similar role.  There are
34       a number of reasons why you might want to write an extension with
35       Platypus instead of XS:
36
37       FFI / Platypus does not require messing with the guts of Perl
38           XS is less of an API and more of the guts of perl splayed out to do
39           whatever you want.  That may at times be very powerful, but it can
40           also be a frustrating exercise in hair pulling.
41
42       FFI / Platypus is portable
43           Lots of languages have FFI interfaces, and it is subjectively
44           easier to port an extension written in FFI in Perl or another
45           language to FFI in another language or Perl.  One goal of the
46           Platypus Project is to reduce common interface specifications to a
47           common format like JSON that could be shared between different
48           languages.
49
50       FFI / Platypus could be a bridge to Raku
51           One of those "other" languages could be Raku and Raku already has
52           an FFI interface I am told.
53
54       FFI / Platypus can be reimplemented
55           In a bright future with multiple implementations of Perl 5, each
56           interpreter will have its own implementation of Platypus, allowing
57           extensions to be written once and used on multiple platforms, in
58           much the same way that Ruby-FFI extensions can be use in Ruby,
59           JRuby and Rubinius.
60
61       FFI / Platypus is pure perl (sorta)
62           One Platypus script or module works on any platform where the
63           libraries it uses are available.  That means you can deploy your
64           Platypus script in a shared filesystem where they may be run on
65           different platforms.  It also means that Platypus modules do not
66           need to be installed in the platform specific Perl library path.
67
68       FFI / Platypus is not C or C++ centric
69           XS is implemented primarily as a bunch of C macros, which requires
70           at least some understanding of C, the C pre-processor, and some C++
71           caveats (since on some platforms Perl is compiled and linked with a
72           C++ compiler). Platypus on the other hand could be used to call
73           other compiled languages, like Fortran, Go, Rust, Pascal, C++, or
74           even assembly, allowing you to focus on your strengths.
75
76       FFI / Platypus does not require a parser
77           Inline isolates the extension developer from XS to some extent, but
78           it also requires a parser.  The various Inline language bindings
79           are a great technical achievement, but I think writing a parser for
80           every language that you want to interface with is a bit of an anti-
81           pattern.
82
83       This document consists of an API reference, a set of examples, some
84       support and development (for contributors) information.  If you are new
85       to Platypus or FFI, you may want to skip down to the EXAMPLES to get a
86       taste of what you can do with Platypus.
87
88       Platypus has extensive documentation of types at FFI::Platypus::Type
89       and its custom types API at FFI::Platypus::API.
90
91       You are strongly encouraged to use API level 1 for all new code.  There
92       are a number of improvements and design fixes that you get for free.
93       You should even consider updating existing modules to use API level 1
94       where feasible.  How do I do that you might ask?  Simply pass in the
95       API level to the platypus constructor.
96
97        my $ffi = FFI::Platypus->new( api => 1 );
98
99       The Platypus documentation has already been updated to assume API level
100       1.
101

CONSTRUCTORS

103   new
104        my $ffi = FFI::Platypus->new( api => 1, %options);
105
106       Create a new instance of FFI::Platypus.
107
108       Any types defined with this instance will be valid for this instance
109       only, so you do not need to worry about stepping on the toes of other
110       CPAN FFI / Platypus Authors.
111
112       Any functions found will be out of the list of libraries specified with
113       the lib attribute.
114
115       options
116
117       api [version 0.91]
118
119           Sets the API level.  Legal values are
120
121           0   Original API level.  See FFI::Platypus::TypeParser::Version0
122               for details on the differences.
123
124           1   Enable the next generation type parser which allows pass-by-
125               value records and type decoration on basic types.  Using API
126               level 1 prior to Platypus version 1.00 will trigger a (noisy)
127               warning.
128
129               All new code should be written with this set to 1!  The
130               Platypus documentation assumes this api level is set.
131
132           2   Enable version 2 API, which is currently experimental.  Using
133               API level 2 prior to Platypus version 2.00 will trigger a
134               (noisy) warning.
135
136               API version 2 is identical to version 1, except:
137
138               Pointer functions that return "NULL" will return "undef"
139               instead of empty list
140                   This fixes a long standing design bug in Platypus.
141
142               Array references may be passed to pointer argument types
143                   This replicates the behavior of array argument types with
144                   no size.  So the types "sint8*" and "sint8[]" behave
145                   identically when an array reference is passed in.  They
146                   differ in that, as before, you can pass a scalar reference
147                   into type "sint8*".
148
149       lib Either a pathname (string) or a list of pathnames (array ref of
150           strings) to pre-populate the lib attribute.  Use "[undef]" to
151           search the current process for symbols.
152
153           0.48
154
155           "undef" (without the array reference) can be used to search the
156           current process for symbols.
157
158       ignore_not_found
159           [version 0.15]
160
161           Set the ignore_not_found attribute.
162
163       lang
164           [version 0.18]
165
166           Set the lang attribute.
167

ATTRIBUTES

169   lib
170        $ffi->lib($path1, $path2, ...);
171        my @paths = $ffi->lib;
172
173       The list of libraries to search for symbols in.
174
175       The most portable and reliable way to find dynamic libraries is by
176       using FFI::CheckLib, like this:
177
178        use FFI::CheckLib 0.06;
179        $ffi->lib(find_lib_or_die lib => 'archive');
180          # finds libarchive.so on Linux
181          #       libarchive.bundle on OS X
182          #       libarchive.dll (or archive.dll) on Windows
183          #       cygarchive-13.dll on Cygwin
184          #       ...
185          # and will die if it isn't found
186
187       FFI::CheckLib has a number of options, such as checking for specific
188       symbols, etc.  You should consult the documentation for that module.
189
190       As a special case, if you add "undef" as a "library" to be searched,
191       Platypus will also search the current process for symbols. This is
192       mostly useful for finding functions in the standard C library, without
193       having to know the name of the standard c library for your platform (as
194       it turns out it is different just about everywhere!).
195
196       You may also use the "find_lib" method as a shortcut:
197
198        $ffi->find_lib( lib => 'archive' );
199
200   ignore_not_found
201       [version 0.15]
202
203        $ffi->ignore_not_found(1);
204        my $ignore_not_found = $ffi->ignore_not_found;
205
206       Normally the attach and function methods will throw an exception if it
207       cannot find the name of the function you provide it.  This will change
208       the behavior such that function will return "undef" when the function
209       is not found and attach will ignore functions that are not found.  This
210       is useful when you are writing bindings to a library and have many
211       optional functions and you do not wish to wrap every call to function
212       or attach in an "eval".
213
214   lang
215       [version 0.18]
216
217        $ffi->lang($language);
218
219       Specifies the foreign language that you will be interfacing with. The
220       default is C.  The foreign language specified with this attribute
221       changes the default native types (for example, if you specify Rust, you
222       will get "i32" as an alias for "sint32" instead of "int" as you do with
223       C).
224
225       If the foreign language plugin supports it, this will also enable
226       Platypus to find symbols using the demangled names (for example, if you
227       specify CPP for C++ you can use method names like "Foo::get_bar()" with
228       "attach" or "function".
229
230   api
231       [version 1.11]
232
233        my $level = $ffi->api;
234
235       Returns the API level of the Platypus instance.
236

METHODS

238   type
239        $ffi->type($typename);
240        $ffi->type($typename => $alias);
241
242       Define a type.  The first argument is the native or C name of the type.
243       The second argument (optional) is an alias name that you can use to
244       refer to this new type.  See FFI::Platypus::Type for legal type
245       definitions.
246
247       Examples:
248
249        $ffi->type('sint32');            # only checks to see that sint32 is a valid type
250        $ffi->type('sint32' => 'myint'); # creates an alias myint for sint32
251        $ffi->type('bogus');             # dies with appropriate diagnostic
252
253   custom_type
254        $ffi->custom_type($alias => {
255          native_type         => $native_type,
256          native_to_perl      => $coderef,
257          perl_to_native      => $coderef,
258          perl_to_native_post => $coderef,
259        });
260
261       Define a custom type.  See FFI::Platypus::Type#Custom-Types for
262       details.
263
264   load_custom_type
265        $ffi->load_custom_type($name => $alias, @type_args);
266
267       Load the custom type defined in the module $name, and make an alias
268       $alias. If the custom type requires any arguments, they may be passed
269       in as @type_args. See FFI::Platypus::Type#Custom-Types for details.
270
271       If $name contains "::" then it will be assumed to be a fully qualified
272       package name. If not, then "FFI::Platypus::Type::" will be prepended to
273       it.
274
275   types
276        my @types = $ffi->types;
277        my @types = FFI::Platypus->types;
278
279       Returns the list of types that FFI knows about.  This will include the
280       native "libffi" types (example: "sint32", "opaque" and "double") and
281       the normal C types (example: "unsigned int", "uint32_t"), any types
282       that you have defined using the type method, and custom types.
283
284       The list of types that Platypus knows about varies somewhat from
285       platform to platform, FFI::Platypus::Type includes a list of the core
286       types that you can always count on having access to.
287
288       It can also be called as a class method, in which case, no user defined
289       or custom types will be included in the list.
290
291   type_meta
292        my $meta = $ffi->type_meta($type_name);
293        my $meta = FFI::Platypus->type_meta($type_name);
294
295       Returns a hash reference with the meta information for the given type.
296
297       It can also be called as a class method, in which case, you won't be
298       able to get meta data on user defined types.
299
300       The format of the meta data is implementation dependent and subject to
301       change.  It may be useful for display or debugging.
302
303       Examples:
304
305        my $meta = $ffi->type_meta('int');        # standard int type
306        my $meta = $ffi->type_meta('int[64]');    # array of 64 ints
307        $ffi->type('int[128]' => 'myintarray');
308        my $meta = $ffi->type_meta('myintarray'); # array of 128 ints
309
310   mangler
311        $ffi->mangler(\&mangler);
312
313       Specify a customer mangler to be used for symbol lookup.  This is
314       usually useful when you are writing bindings for a library where all of
315       the functions have the same prefix.  Example:
316
317        $ffi->mangler(sub {
318          my($symbol) = @_;
319          return "foo_$symbol";
320        });
321
322        $ffi->function( get_bar => [] => 'int' );  # attaches foo_get_bar
323
324        my $f = $ffi->function( set_baz => ['int'] => 'void' );
325        $f->call(22); # calls foo_set_baz
326
327   function
328        my $function = $ffi->function($name => \@argument_types => $return_type);
329        my $function = $ffi->function($address => \@argument_types => $return_type);
330        my $function = $ffi->function($name => \@argument_types => $return_type, \&wrapper);
331        my $function = $ffi->function($address => \@argument_types => $return_type, \&wrapper);
332
333       Returns an object that is similar to a code reference in that it can be
334       called like one.
335
336       Caveat: many situations require a real code reference, so at the price
337       of a performance penalty you can get one like this:
338
339        my $function = $ffi->function(...);
340        my $coderef = sub { $function->(@_) };
341
342       It may be better, and faster to create a real Perl function using the
343       attach method.
344
345       In addition to looking up a function by name you can provide the
346       address of the symbol yourself:
347
348        my $address = $ffi->find_symbol('my_function');
349        my $function = $ffi->function($address => ...);
350
351       Under the covers, function uses find_symbol when you provide it with a
352       name, but it is useful to keep this in mind as there are alternative
353       ways of obtaining a functions address.  Example: a C function could
354       return the address of another C function that you might want to call,
355       or modules such as FFI::TinyCC produce machine code at runtime that you
356       can call from Platypus.
357
358       [version 0.76]
359
360       If the last argument is a code reference, then it will be used as a
361       wrapper around the function when called.  The first argument to the
362       wrapper will be the inner function, or if it is later attached an xsub.
363       This can be used if you need to verify/modify input/output data.
364
365       Examples:
366
367        my $function = $ffi->function('my_function_name', ['int', 'string'] => 'string');
368        my $return_string = $function->(1, "hi there");
369
370       [version 0.91]
371
372        my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type);
373        my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => $return_type, \&wrapper);
374        my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types);
375        my $function = $ffi->function( $name => \@fixed_argument_types => \@var_argument_types => \&wrapper);
376
377       Version 0.91 and later allows you to creat functions for c variadic
378       functions (such as printf, scanf, etc) which can take a variable number
379       of arguments.  The first set of arguments are the fixed set, the second
380       set are the variable arguments to bind with.  The variable argument
381       types must be specified in order to create a function object, so if you
382       need to call variadic function with different set of arguments then you
383       will need to create a new function object each time:
384
385        # int printf(const char *fmt, ...);
386        $ffi->function( printf => ['string'] => ['int'] => 'int' )
387            ->call("print integer %d\n", 42);
388        $ffi->function( printf => ['string'] => ['string'] => 'int' )
389            ->call("print string %s\n", 'platypus');
390
391       Some older versions of libffi and possibly some platforms may not
392       support variadic functions.  If you try to create a one, then an
393       exception will be thrown.
394
395       [version 1.26]
396
397       If the return type is omitted then "void" will be the assumed return
398       type.
399
400   attach
401        $ffi->attach($name => \@argument_types => $return_type);
402        $ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type);
403        $ffi->attach([$address => $perl_name] => \@argument_types => $return_type);
404        $ffi->attach($name => \@argument_types => $return_type, \&wrapper);
405        $ffi->attach([$c_name => $perl_name] => \@argument_types => $return_type, \&wrapper);
406        $ffi->attach([$address => $perl_name] => \@argument_types => $return_type, \&wrapper);
407
408       Find and attach a C function as a real live Perl xsub.  The advantage
409       of attaching a function over using the function method is that it is
410       much much much faster since no object resolution needs to be done.  The
411       disadvantage is that it locks the function and the FFI::Platypus
412       instance into memory permanently, since there is no way to deallocate
413       an xsub.
414
415       If just one $name is given, then the function will be attached in Perl
416       with the same name as it has in C.  The second form allows you to give
417       the Perl function a different name.  You can also provide an address
418       (the third form), just like with the function method.
419
420       Examples:
421
422        $ffi->attach('my_function_name', ['int', 'string'] => 'string');
423        $ffi->attach(['my_c_function_name' => 'my_perl_function_name'], ['int', 'string'] => 'string');
424        my $string1 = my_function_name($int);
425        my $string2 = my_perl_function_name($int);
426
427       [version 0.20]
428
429       If the last argument is a code reference, then it will be used as a
430       wrapper around the attached xsub.  The first argument to the wrapper
431       will be the inner xsub.  This can be used if you need to verify/modify
432       input/output data.
433
434       Examples:
435
436        $ffi->attach('my_function', ['int', 'string'] => 'string', sub {
437          my($my_function_xsub, $integer, $string) = @_;
438          $integer++;
439          $string .= " and another thing";
440          my $return_string = $my_function_xsub->($integer, $string);
441          $return_string =~ s/Belgium//; # HHGG remove profanity
442          $return_string;
443        });
444
445       [version 0.91]
446
447        $ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type);
448        $ffi->attach($name => \@fixed_argument_types => \@var_argument_types, $return_type, \&wrapper);
449
450       As of version 0.91 you can attach a variadic functions, if it is
451       supported by the platform / libffi that you are using.  For details see
452       the "function" documentation.  If not supported by the implementation
453       then an exception will be thrown.
454
455   closure
456        my $closure = $ffi->closure($coderef);
457        my $closure = FFI::Platypus->closure($coderef);
458
459       Prepares a code reference so that it can be used as a FFI closure (a
460       Perl subroutine that can be called from C code).  For details on
461       closures, see FFI::Platypus::Type#Closures and FFI::Platypus::Closure.
462
463   cast
464        my $converted_value = $ffi->cast($original_type, $converted_type, $original_value);
465
466       The "cast" function converts an existing $original_value of type
467       $original_type into one of type $converted_type.  Not all types are
468       supported, so care must be taken.  For example, to get the address of a
469       string, you can do this:
470
471        my $address = $ffi->cast('string' => 'opaque', $string_value);
472
473       Something that won't work is trying to cast an array to anything:
474
475        my $address = $ffi->cast('int[10]' => 'opaque', \@list);  # WRONG
476
477   attach_cast
478        $ffi->attach_cast("cast_name", $original_type, $converted_type);
479        $ffi->attach_cast("cast_name", $original_type, $converted_type, \&wrapper);
480        my $converted_value = cast_name($original_value);
481
482       This function attaches a cast as a permanent xsub.  This will make it
483       faster and may be useful if you are calling a particular cast a lot.
484
485       [version 1.26]
486
487       A wrapper may be added as the last argument to "attach_cast" and works
488       just like the wrapper for "attach" and "function" methods.
489
490   sizeof
491        my $size = $ffi->sizeof($type);
492        my $size = FFI::Platypus->sizeof($type);
493
494       Returns the total size of the given type in bytes.  For example to get
495       the size of an integer:
496
497        my $intsize = $ffi->sizeof('int');   # usually 4
498        my $longsize = $ffi->sizeof('long'); # usually 4 or 8 depending on platform
499
500       You can also get the size of arrays
501
502        my $intarraysize = $ffi->sizeof('int[64]');  # usually 4*64
503        my $intarraysize = $ffi->sizeof('long[64]'); # usually 4*64 or 8*64
504                                                     # depending on platform
505
506       Keep in mind that "pointer" types will always be the pointer / word
507       size for the platform that you are using.  This includes strings,
508       opaque and pointers to other types.
509
510       This function is not very fast, so you might want to save this value as
511       a constant, particularly if you need the size in a loop with many
512       iterations.
513
514   alignof
515       [version 0.21]
516
517        my $align = $ffi->alignof($type);
518
519       Returns the alignment of the given type in bytes.
520
521   kindof
522       [version 1.24]
523
524        my $kind = $ffi->kindof($type);
525
526       Returns the kind of a type.  This is a string with a value of one of
527
528       "void"
529       "scalar"
530       "string"
531       "closure"
532       "record"
533       "record-value"
534       "pointer"
535       "array"
536       "object"
537
538   countof
539       [version 1.24]
540
541        my $count = $ffi->countof($type);
542
543       For array types returns the number of elements in the array (returns 0
544       for variable length array).  For the "void" type returns 0.  Returns 1
545       for all other types.
546
547   def
548       [version 1.24]
549
550        $ffi->def($package, $type, $value);
551        my $value = $ff->def($package, $type);
552
553       This method allows you to store data for types.  If the $package is not
554       provided, then the caller's package will be used.  $type must be a
555       legal Platypus type for the FFI::Platypus instance.
556
557   unitof
558       [version 1.24]
559
560        my $unittype = $ffi->unitof($type);
561
562       For array and pointer types, returns the basic type without the array
563       or pointer part.  In other words, for "sin16[]" or "sint16*" it will
564       return "sint16".
565
566   find_lib
567       [version 0.20]
568
569        $ffi->find_lib( lib => $libname );
570
571       This is just a shortcut for calling FFI::CheckLib#find_lib and updating
572       the "lib" attribute appropriately.  Care should be taken though, as
573       this method simply passes its arguments to FFI::CheckLib#find_lib, so
574       if your module or script is depending on a specific feature in
575       FFI::CheckLib then make sure that you update your prerequisites
576       appropriately.
577
578   find_symbol
579        my $address = $ffi->find_symbol($name);
580
581       Return the address of the given symbol (usually function).
582
583   bundle
584       [version 0.96 api = 1+]
585
586        $ffi->bundle($package, \@args);
587        $ffi->bundle(\@args);
588        $ffi->bundle($package);
589        $ffi->bundle;
590
591       This is an interface for bundling compiled code with your distribution
592       intended to eventually replace the "package" method documented above.
593       See FFI::Platypus::Bundle for details on how this works.
594
595   package
596       [version 0.15 api = 0]
597
598        $ffi->package($package, $file); # usually __PACKAGE__ and __FILE__ can be used
599        $ffi->package;                  # autodetect
600
601       Note: This method is officially discouraged in favor of "bundle"
602       described above.
603
604       If you use FFI::Build (or the older deprecated Module::Build::FFI to
605       bundle C code with your distribution, you can use this method to tell
606       the FFI::Platypus instance to look for symbols that came with the
607       dynamic library that was built when your distribution was installed.
608
609   abis
610        my $href = $ffi->abis;
611        my $href = FFI::Platypus->abis;
612
613       Get the legal ABIs supported by your platform and underlying
614       implementation.  What is supported can vary a lot by CPU and by
615       platform, or even between 32 and 64 bit on the same CPU and platform.
616       They keys are the "ABI" names, also known as "calling conventions".
617       The values are integers used internally by the implementation to
618       represent those ABIs.
619
620   abi
621        $ffi->abi($name);
622
623       Set the ABI or calling convention for use in subsequent calls to
624       "function" or "attach".  May be either a string name or integer value
625       from the "abis" method above.
626

EXAMPLES

628       Here are some examples.  These examples are provided in full with the
629       Platypus distribution in the "examples" directory.  There are also some
630       more examples in FFI::Platypus::Type that are related to types.
631
632   Integer conversions
633        use FFI::Platypus 1.00;
634
635        my $ffi = FFI::Platypus->new( api => 1 );
636        $ffi->lib(undef);
637
638        $ffi->attach(puts => ['string'] => 'int');
639        $ffi->attach(atoi => ['string'] => 'int');
640
641        puts(atoi('56'));
642
643       Discussion: "puts" and "atoi" should be part of the standard C library
644       on all platforms.  "puts" prints a string to standard output, and
645       "atoi" converts a string to integer.  Specifying "undef" as a library
646       tells Platypus to search the current process for symbols, which
647       includes the standard c library.
648
649   libnotify
650        use FFI::CheckLib;
651        use FFI::Platypus 1.00;
652
653        # NOTE: I ported this from anoter Perl FFI library and it seems to work most
654        # of the time, but also seems to SIGSEGV sometimes.  I saw the same behavior
655        # in the old version, and am not really familiar with the libnotify API to
656        # say what is the cause.  Patches welcome to fix it.
657
658        my $ffi = FFI::Platypus->new( api => 1 );
659        $ffi->lib(find_lib_or_exit lib => 'notify');
660
661        $ffi->attach(notify_init   => ['string'] => 'void');
662        $ffi->attach(notify_uninit => []       => 'void');
663        $ffi->attach([notify_notification_new    => 'notify_new']    => ['string', 'string', 'string']           => 'opaque');
664        $ffi->attach([notify_notification_update => 'notify_update'] => ['opaque', 'string', 'string', 'string'] => 'void');
665        $ffi->attach([notify_notification_show   => 'notify_show']   => ['opaque', 'opaque']                     => 'void');
666
667        notify_init('FFI::Platypus');
668        my $n = notify_new('','','');
669        notify_update($n, 'FFI::Platypus', 'It works!!!', 'media-playback-start');
670        notify_show($n, undef);
671        notify_uninit();
672
673       Discussion: libnotify is a desktop GUI notification library for the
674       GNOME Desktop environment. This script sends a notification event that
675       should show up as a balloon, for me it did so in the upper right hand
676       corner of my screen.
677
678       The most portable way to find the correct name and location of a
679       dynamic library is via the FFI::CheckLib#find_lib family of functions.
680       If you are putting together a CPAN distribution, you should also
681       consider using FFI::CheckLib#check_lib_or_exit function in your
682       "Build.PL" or "Makefile.PL" file (If you are using Dist::Zilla, check
683       out the Dist::Zilla::Plugin::FFI::CheckLib plugin). This will provide a
684       user friendly diagnostic letting the user know that the required
685       library is missing, and reduce the number of bogus CPAN testers results
686       that you will get.
687
688       Also in this example, we rename some of the functions when they are
689       placed into Perl space to save typing:
690
691        $ffi->attach( [notify_notification_new => 'notify_new']
692          => ['string','string','string']
693          => 'opaque'
694        );
695
696       When you specify a list reference as the "name" of the function the
697       first element is the symbol name as understood by the dynamic library.
698       The second element is the name as it will be placed in Perl space.
699
700       Later, when we call "notify_new":
701
702        my $n = notify_new('','','');
703
704       We are really calling the C function "notify_notification_new".
705
706   Allocating and freeing memory
707        use FFI::Platypus 1.00;
708        use FFI::Platypus::Memory qw( malloc free memcpy );
709
710        my $ffi = FFI::Platypus->new( api => 1 );
711        my $buffer = malloc 12;
712
713        memcpy $buffer, $ffi->cast('string' => 'opaque', "hello there"), length "hello there\0";
714
715        print $ffi->cast('opaque' => 'string', $buffer), "\n";
716
717        free $buffer;
718
719       Discussion: "malloc" and "free" are standard memory allocation
720       functions available from the standard c library and.  Interfaces to
721       these and other memory related functions are provided by the
722       FFI::Platypus::Memory module.
723
724   structured data records
725        use FFI::Platypus 1.00;
726        use FFI::C;
727
728        my $ffi = FFI::Platypus->new(
729          api => 1,
730          lib => [undef],
731        );
732        FFI::C->ffi($ffi);
733
734        package Unix::TimeStruct {
735
736          FFI::C->struct(tm => [
737            tm_sec    => 'int',
738            tm_min    => 'int',
739            tm_hour   => 'int',
740            tm_mday   => 'int',
741            tm_mon    => 'int',
742            tm_year   => 'int',
743            tm_wday   => 'int',
744            tm_yday   => 'int',
745            tm_isdst  => 'int',
746            tm_gmtoff => 'long',
747            _tm_zone  => 'opaque',
748          ]);
749
750          # For now 'string' is unsupported by FFI::C, but we
751          # can cast the time zone from an opaque pointer to
752          # string.
753          sub tm_zone {
754            my $self = shift;
755            $ffi->cast('opaque', 'string', $self->_tm_zone);
756          }
757
758          # attach the C localtime function
759          $ffi->attach( localtime => ['time_t*'] => 'tm', sub {
760            my($inner, $class, $time) = @_;
761            $time = time unless defined $time;
762            $inner->(\$time);
763          });
764        }
765
766        # now we can actually use our Unix::TimeStruct class
767        my $time = Unix::TimeStruct->localtime;
768        printf "time is %d:%d:%d %s\n",
769          $time->tm_hour,
770          $time->tm_min,
771          $time->tm_sec,
772          $time->tm_zone;
773
774       Discussion: C and other machine code languages frequently provide
775       interfaces that include structured data records (known as "structs" in
776       C).  They sometimes provide an API in which you are expected to
777       manipulate these records before and/or after passing them along to C
778       functions.  For C pointers to structs, unions and arrays of structs and
779       unions, the easiest interface to use is via FFI::C.  If you are working
780       with structs that must be passed as values (not pointers), then you
781       want to use the FFI::Platypus::Record class instead.  We will discuss
782       this class later.
783
784       The C "localtime" function takes a pointer to a C struct.  We simply
785       define the members of the struct using the FFI::C "struct" method.
786       Because we used the "ffi" method to tell FFI::C to use our local
787       instance of FFI::Platypus it registers the "tm" type for us, and we can
788       just start using it as a return type!
789
790   structured data records by-value
791   libuuid
792        use FFI::CheckLib;
793        use FFI::Platypus 1.00;
794        use FFI::Platypus::Memory qw( malloc free );
795
796        my $ffi = FFI::Platypus->new( api => 1 );
797        $ffi->lib(find_lib_or_exit lib => 'uuid');
798        $ffi->type('string(37)*' => 'uuid_string');
799        $ffi->type('record(16)*' => 'uuid_t');
800
801        $ffi->attach(uuid_generate => ['uuid_t'] => 'void');
802        $ffi->attach(uuid_unparse  => ['uuid_t','uuid_string'] => 'void');
803
804        my $uuid = "\0" x $ffi->sizeof('uuid_t');
805        uuid_generate($uuid);
806
807        my $string = "\0" x $ffi->sizeof('uuid_string');
808        uuid_unparse($uuid, $string);
809
810        print "$string\n";
811
812       Discussion: libuuid is a library used to generate unique identifiers
813       (UUID) for objects that may be accessible beyond the local system.  The
814       library is or was part of the Linux e2fsprogs package.
815
816       Knowing the size of objects is sometimes important.  In this example,
817       we use the sizeof function to get the size of 16 characters (in this
818       case it is simply 16 bytes).  We also know that the strings "deparsed"
819       by "uuid_unparse" are exactly 37 bytes.
820
821   puts and getpid
822        use FFI::Platypus 1.00;
823
824        my $ffi = FFI::Platypus->new( api => 1 );
825        $ffi->lib(undef);
826
827        $ffi->attach(puts => ['string'] => 'int');
828        $ffi->attach(getpid => [] => 'int');
829
830        puts(getpid());
831
832       Discussion: "puts" is part of standard C library on all platforms.
833       "getpid" is available on Unix type platforms.
834
835   Math library
836        use FFI::Platypus 1.00;
837        use FFI::CheckLib;
838
839        my $ffi = FFI::Platypus->new( api => 1 );
840        $ffi->lib(undef);
841        $ffi->attach(puts => ['string'] => 'int');
842        $ffi->attach(fdim => ['double','double'] => 'double');
843
844        puts(fdim(7.0, 2.0));
845
846        $ffi->attach(cos => ['double'] => 'double');
847
848        puts(cos(2.0));
849
850        $ffi->attach(fmax => ['double', 'double'] => 'double');
851
852        puts(fmax(2.0,3.0));
853
854       Discussion: On UNIX the standard c library math functions are
855       frequently provided in a separate library "libm", so you could search
856       for those symbols in "libm.so", but that won't work on non-UNIX
857       platforms like Microsoft Windows.  Fortunately Perl uses the math
858       library so these symbols are already in the current process so you can
859       use "undef" as the library to find them.
860
861   Strings
862        use FFI::Platypus 1.00;
863
864        my $ffi = FFI::Platypus->new( api => 1 );
865        $ffi->lib(undef);
866        $ffi->attach(puts => ['string'] => 'int');
867        $ffi->attach(strlen => ['string'] => 'int');
868
869        puts(strlen('somestring'));
870
871        $ffi->attach(strstr => ['string','string'] => 'string');
872
873        puts(strstr('somestring', 'string'));
874
875        #attach puts => [string] => int;
876
877        puts(puts("lol"));
878
879        $ffi->attach(strerror => ['int'] => 'string');
880
881        puts(strerror(2));
882
883       Discussion: ASCII and UTF-8 Strings are not a native type to "libffi"
884       but the are handled seamlessly by Platypus.  If you need to talk to an
885       API that uses so called "wide" strings (APIs which use "const wchar_t*"
886       or "wchar_t*"), then you will want to use the wide string type plugin
887       FFI::Platypus::Type::WideString.  APIs which use other arbitrary
888       encodings can be accessed by converting your Perl strings manually with
889       the Encode module.
890
891   Attach function from pointer
892        use FFI::TinyCC;
893        use FFI::Platypus 1.00;
894
895        my $ffi = FFI::Platypus->new( api => 1 );
896        my $tcc = FFI::TinyCC->new;
897
898        $tcc->compile_string(q{
899          int
900          add(int a, int b)
901          {
902            return a+b;
903          }
904        });
905
906        my $address = $tcc->get_symbol('add');
907
908        $ffi->attach( [ $address => 'add' ] => ['int','int'] => 'int' );
909
910        print add(1,2), "\n";
911
912       Discussion: Sometimes you will have a pointer to a function from a
913       source other than Platypus that you want to call.  You can use that
914       address instead of a function name for either of the function or attach
915       methods.  In this example we use FFI::TinyCC to compile a short piece
916       of C code and to give us the address of one of its functions, which we
917       then use to create a perl xsub to call it.
918
919       FFI::TinyCC embeds the Tiny C Compiler (tcc) to provide a just-in-time
920       (JIT) compilation service for FFI.
921
922   libzmq
923        use constant ZMQ_IO_THREADS  => 1;
924        use constant ZMQ_MAX_SOCKETS => 2;
925        use constant ZMQ_REQ => 3;
926        use constant ZMQ_REP => 4;
927        use FFI::CheckLib qw( find_lib_or_exit );
928        use FFI::Platypus 1.00;
929        use FFI::Platypus::Memory qw( malloc );
930        use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );
931
932        my $endpoint = "ipc://zmq-ffi-$$";
933        my $ffi = FFI::Platypus->new( api => 1 );
934
935        $ffi->lib(undef); # for puts
936        $ffi->attach(puts => ['string'] => 'int');
937
938        $ffi->lib(find_lib_or_exit lib => 'zmq');
939        $ffi->attach(zmq_version => ['int*', 'int*', 'int*'] => 'void');
940
941        my($major,$minor,$patch);
942        zmq_version(\$major, \$minor, \$patch);
943        puts("libzmq version $major.$minor.$patch");
944        die "this script only works with libzmq 3 or better" unless $major >= 3;
945
946        $ffi->type('opaque'       => 'zmq_context');
947        $ffi->type('opaque'       => 'zmq_socket');
948        $ffi->type('opaque'       => 'zmq_msg_t');
949        $ffi->attach(zmq_ctx_new  => [] => 'zmq_context');
950        $ffi->attach(zmq_ctx_set  => ['zmq_context', 'int', 'int'] => 'int');
951        $ffi->attach(zmq_socket   => ['zmq_context', 'int'] => 'zmq_socket');
952        $ffi->attach(zmq_connect  => ['opaque', 'string'] => 'int');
953        $ffi->attach(zmq_bind     => ['zmq_socket', 'string'] => 'int');
954        $ffi->attach(zmq_send     => ['zmq_socket', 'opaque', 'size_t', 'int'] => 'int');
955        $ffi->attach(zmq_msg_init => ['zmq_msg_t'] => 'int');
956        $ffi->attach(zmq_msg_recv => ['zmq_msg_t', 'zmq_socket', 'int'] => 'int');
957        $ffi->attach(zmq_msg_data => ['zmq_msg_t'] => 'opaque');
958        $ffi->attach(zmq_errno    => [] => 'int');
959        $ffi->attach(zmq_strerror => ['int'] => 'string');
960
961        my $context = zmq_ctx_new();
962        zmq_ctx_set($context, ZMQ_IO_THREADS, 1);
963
964        my $socket1 = zmq_socket($context, ZMQ_REQ);
965        zmq_connect($socket1, $endpoint);
966
967        my $socket2 = zmq_socket($context, ZMQ_REP);
968        zmq_bind($socket2, $endpoint);
969
970        do { # send
971          our $sent_message = "hello there";
972          my($pointer, $size) = scalar_to_buffer $sent_message;
973          my $r = zmq_send($socket1, $pointer, $size, 0);
974          die zmq_strerror(zmq_errno()) if $r == -1;
975        };
976
977        do { # recv
978          my $msg_ptr  = malloc 100;
979          zmq_msg_init($msg_ptr);
980          my $size     = zmq_msg_recv($msg_ptr, $socket2, 0);
981          die zmq_strerror(zmq_errno()) if $size == -1;
982          my $data_ptr = zmq_msg_data($msg_ptr);
983          my $recv_message = buffer_to_scalar $data_ptr, $size;
984          print "recv_message = $recv_message\n";
985        };
986
987       Discussion: ØMQ is a high-performance asynchronous messaging library.
988       There are a few things to note here.
989
990       Firstly, sometimes there may be multiple versions of a library in the
991       wild and you may need to verify that the library on a system meets your
992       needs (alternatively you could support multiple versions and configure
993       your bindings dynamically).  Here we use "zmq_version" to ask libzmq
994       which version it is.
995
996       "zmq_version" returns the version number via three integer pointer
997       arguments, so we use the pointer to integer type: "int *".  In order to
998       pass pointer types, we pass a reference. In this case it is a reference
999       to an undefined value, because zmq_version will write into the pointers
1000       the output values, but you can also pass in references to integers,
1001       floating point values and opaque pointer types.  When the function
1002       returns the $major variable (and the others) has been updated and we
1003       can use it to verify that it supports the API that we require.
1004
1005       Notice that we define three aliases for the "opaque" type:
1006       "zmq_context", "zmq_socket" and "zmq_msg_t".  While this isn't strictly
1007       necessary, since Platypus and C treat all three of these types the
1008       same, it is useful form of documentation that helps describe the
1009       functionality of the interface.
1010
1011       Finally we attach the necessary functions, send and receive a message.
1012       If you are interested, there is a fully fleshed out ØMQ Perl interface
1013       implemented using FFI called ZMQ::FFI.
1014
1015   libarchive
1016        use FFI::Platypus 1.00;
1017        use FFI::CheckLib qw( find_lib_or_exit );
1018
1019        # This example uses FreeBSD's libarchive to list the contents of any
1020        # archive format that it suppors.  We've also filled out a part of
1021        # the ArchiveWrite class that could be used for writing archive formats
1022        # supported by libarchive
1023
1024        my $ffi = FFI::Platypus->new( api => 1 );
1025        $ffi->lib(find_lib_or_exit lib => 'archive');
1026        $ffi->type('object(Archive)'      => 'archive_t');
1027        $ffi->type('object(ArchiveRead)'  => 'archive_read_t');
1028        $ffi->type('object(ArchiveWrite)' => 'archive_write_t');
1029        $ffi->type('object(ArchiveEntry)' => 'archive_entry_t');
1030
1031        package Archive;
1032
1033        # base class is "abstract" having no constructor or destructor
1034
1035        $ffi->mangler(sub {
1036          my($name) = @_;
1037          "archive_$name";
1038        });
1039        $ffi->attach( error_string => ['archive_t'] => 'string' );
1040
1041        package ArchiveRead;
1042
1043        our @ISA = qw( Archive );
1044
1045        $ffi->mangler(sub {
1046          my($name) = @_;
1047          "archive_read_$name";
1048        });
1049
1050        $ffi->attach( new                   => ['string']                        => 'archive_read_t' );
1051        $ffi->attach( [ free => 'DESTROY' ] => ['archive_t']                     => 'void' );
1052        $ffi->attach( support_filter_all    => ['archive_t']                     => 'int' );
1053        $ffi->attach( support_format_all    => ['archive_t']                     => 'int' );
1054        $ffi->attach( open_filename         => ['archive_t','string','size_t']   => 'int' );
1055        $ffi->attach( next_header2          => ['archive_t', 'archive_entry_t' ] => 'int' );
1056        $ffi->attach( data_skip             => ['archive_t']                     => 'int' );
1057        # ... define additional read methods
1058
1059        package ArchiveWrite;
1060
1061        our @ISA = qw( Archive );
1062
1063        $ffi->mangler(sub {
1064          my($name) = @_;
1065          "archive_write_$name";
1066        });
1067
1068        $ffi->attach( new                   => ['string'] => 'archive_write_t' );
1069        $ffi->attach( [ free => 'DESTROY' ] => ['archive_write_t'] => 'void' );
1070        # ... define additional write methods
1071
1072        package ArchiveEntry;
1073
1074        $ffi->mangler(sub {
1075          my($name) = @_;
1076          "archive_entry_$name";
1077        });
1078
1079        $ffi->attach( new => ['string']     => 'archive_entry_t' );
1080        $ffi->attach( [ free => 'DESTROY' ] => ['archive_entry_t'] => 'void' );
1081        $ffi->attach( pathname              => ['archive_entry_t'] => 'string' );
1082        # ... define additional entry methods
1083
1084        package main;
1085
1086        use constant ARCHIVE_OK => 0;
1087
1088        # this is a Perl version of the C code here:
1089        # https://github.com/libarchive/libarchive/wiki/Examples#List_contents_of_Archive_stored_in_File
1090
1091        my $archive_filename = shift @ARGV;
1092        unless(defined $archive_filename)
1093        {
1094          print "usage: $0 archive.tar\n";
1095          exit;
1096        }
1097
1098        my $archive = ArchiveRead->new;
1099        $archive->support_filter_all;
1100        $archive->support_format_all;
1101
1102        my $r = $archive->open_filename($archive_filename, 1024);
1103        die "error opening $archive_filename: ", $archive->error_string
1104          unless $r == ARCHIVE_OK;
1105
1106        my $entry = ArchiveEntry->new;
1107
1108        while($archive->next_header2($entry) == ARCHIVE_OK)
1109        {
1110          print $entry->pathname, "\n";
1111          $archive->data_skip;
1112        }
1113
1114       Discussion: libarchive is the implementation of "tar" for FreeBSD
1115       provided as a library and available on a number of platforms.
1116
1117       One interesting thing about libarchive is that it provides a kind of
1118       object oriented interface via opaque pointers.  This example creates an
1119       abstract class "Archive", and concrete classes "ArchiveWrite",
1120       "ArchiveRead" and "ArchiveEntry".  The concrete classes can even be
1121       inherited from and extended just like any Perl classes because of the
1122       way the custom types are implemented.  We use Platypus's "object" type
1123       for this implementation, which is a wrapper around an "opaque" (can
1124       also be an integer) type that is blessed into a particular class.
1125
1126       Another advanced feature of this example is that we define a mangler to
1127       modify the symbol resolution for each class.  This means we can do this
1128       when we define a method for Archive:
1129
1130        $ffi->attach( support_filter_all => ['archive_t'] => 'int' );
1131
1132       Rather than this:
1133
1134        $ffi->attach(
1135          [ archive_read_support_filter_all => 'support_read_filter_all' ] =>
1136          ['archive_t'] => 'int' );
1137        );
1138
1139   unix open
1140        use FFI::Platypus 1.00;
1141
1142        {
1143          package FD;
1144
1145          use constant O_RDONLY => 0;
1146          use constant O_WRONLY => 1;
1147          use constant O_RDWR   => 2;
1148
1149          use constant IN  => bless \do { my $in=0  }, __PACKAGE__;
1150          use constant OUT => bless \do { my $out=1 }, __PACKAGE__;
1151          use constant ERR => bless \do { my $err=2 }, __PACKAGE__;
1152
1153          my $ffi = FFI::Platypus->new( api => 1, lib => [undef]);
1154
1155          $ffi->type('object(FD,int)' => 'fd');
1156
1157          $ffi->attach( [ 'open' => 'new' ] => [ 'string', 'int', 'mode_t' ] => 'fd' => sub {
1158            my($xsub, $class, $fn, @rest) = @_;
1159            my $fd = $xsub->($fn, @rest);
1160            die "error opening $fn $!" if $$fd == -1;
1161            $fd;
1162          });
1163
1164          $ffi->attach( write => ['fd', 'string', 'size_t' ] => 'ssize_t' );
1165          $ffi->attach( read  => ['fd', 'string', 'size_t' ] => 'ssize_t' );
1166          $ffi->attach( close => ['fd'] => 'int' );
1167        }
1168
1169        my $fd = FD->new("$0", FD::O_RDONLY);
1170
1171        my $buffer = "\0" x 10;
1172
1173        while(my $br = $fd->read($buffer, 10))
1174        {
1175          FD::OUT->write($buffer, $br);
1176        }
1177
1178        $fd->close;
1179
1180       Discussion: The Unix file system calls use an integer handle for each
1181       open file.  We can use the same "object" type that we used for
1182       libarchive above, except we let platypus know that the underlying type
1183       is "int" instead of "opaque" (the latter being the default for the
1184       "object" type).  Mainly just for demonstration since Perl has much
1185       better IO libraries, but now we have an OO interface to the Unix IO
1186       functions.
1187
1188   bzip2
1189        use FFI::Platypus 1.00;
1190        use FFI::CheckLib qw( find_lib_or_die );
1191        use FFI::Platypus::Buffer qw( scalar_to_buffer buffer_to_scalar );
1192        use FFI::Platypus::Memory qw( malloc free );
1193
1194        my $ffi = FFI::Platypus->new( api => 1 );
1195        $ffi->lib(find_lib_or_die lib => 'bz2');
1196
1197        $ffi->attach(
1198          [ BZ2_bzBuffToBuffCompress => 'compress' ] => [
1199            'opaque',                           # dest
1200            'unsigned int *',                   # dest length
1201            'opaque',                           # source
1202            'unsigned int',                     # source length
1203            'int',                              # blockSize100k
1204            'int',                              # verbosity
1205            'int',                              # workFactor
1206          ] => 'int',
1207          sub {
1208            my $sub = shift;
1209            my($source,$source_length) = scalar_to_buffer $_[0];
1210            my $dest_length = int(length($source)*1.01) + 1 + 600;
1211            my $dest = malloc $dest_length;
1212            my $r = $sub->($dest, \$dest_length, $source, $source_length, 9, 0, 30);
1213            die "bzip2 error $r" unless $r == 0;
1214            my $compressed = buffer_to_scalar($dest, $dest_length);
1215            free $dest;
1216            $compressed;
1217          },
1218        );
1219
1220        $ffi->attach(
1221          [ BZ2_bzBuffToBuffDecompress => 'decompress' ] => [
1222            'opaque',                           # dest
1223            'unsigned int *',                   # dest length
1224            'opaque',                           # source
1225            'unsigned int',                     # source length
1226            'int',                              # small
1227            'int',                              # verbosity
1228          ] => 'int',
1229          sub {
1230            my $sub = shift;
1231            my($source, $source_length) = scalar_to_buffer $_[0];
1232            my $dest_length = $_[1];
1233            my $dest = malloc $dest_length;
1234            my $r = $sub->($dest, \$dest_length, $source, $source_length, 0, 0);
1235            die "bzip2 error $r" unless $r == 0;
1236            my $decompressed = buffer_to_scalar($dest, $dest_length);
1237            free $dest;
1238            $decompressed;
1239          },
1240        );
1241
1242        my $original = "hello compression world\n";
1243        my $compressed = compress($original);
1244        print decompress($compressed, length $original);
1245
1246       Discussion: bzip2 is a compression library.  For simple one shot
1247       attempts at compression/decompression when you expect the original and
1248       the result to fit within memory it provides two convenience functions
1249       "BZ2_bzBuffToBuffCompress" and "BZ2_bzBuffToBuffDecompress".
1250
1251       The first four arguments of both of these C functions are identical,
1252       and represent two buffers.  One buffer is the source, the second is the
1253       destination.  For the destination, the length is passed in as a pointer
1254       to an integer.  On input this integer is the size of the destination
1255       buffer, and thus the maximum size of the compressed or decompressed
1256       data.  When the function returns the actual size of compressed or
1257       compressed data is stored in this integer.
1258
1259       This is normal stuff for C, but in Perl our buffers are scalars and
1260       they already know how large they are.  In this sort of situation,
1261       wrapping the C function in some Perl code can make your interface a
1262       little more Perl like.  In order to do this, just provide a code
1263       reference as the last argument to the "attach" method.  The first
1264       argument to this wrapper will be a code reference to the C function.
1265       The Perl arguments will come in after that.  This allows you to modify
1266       / convert the arguments to conform to the C API.  What ever value you
1267       return from the wrapper function will be returned back to the original
1268       caller.
1269
1270   The Win32 API
1271        use utf8;
1272        use FFI::Platypus 1.00;
1273
1274        my $ffi = FFI::Platypus->new(
1275          api  => 1,
1276          lib  => [undef],
1277        );
1278
1279        # see FFI::Platypus::Lang::Win32
1280        $ffi->lang('Win32');
1281
1282        # Send a Unicode string to the Windows API MessageBoxW function.
1283        use constant MB_OK                   => 0x00000000;
1284        use constant MB_DEFAULT_DESKTOP_ONLY => 0x00020000;
1285        $ffi->attach( [MessageBoxW => 'MessageBox'] => [ 'HWND', 'LPCWSTR', 'LPCWSTR', 'UINT'] => 'int' );
1286        MessageBox(undef, "I ❤️ Platypus", "Confession", MB_OK|MB_DEFAULT_DESKTOP_ONLY);
1287
1288       Discussion: The API used by Microsoft Windows present some unique
1289       challenges.  On 32 bit systems a different ABI is used than what is
1290       used by the standard C library.  It also provides a rats nest of type
1291       aliases.  Finally if you want to talk Unicode to any of the Windows API
1292       you will need to use "UTF-16LE" instead of "utf-8" which is native to
1293       Perl.  (The Win32 API refers to these as "LPWSTR" and "LPCWSTR" types).
1294       As much as possible the Win32 "language" plugin attempts to handle this
1295       transparently.  For more details see FFI::Platypus::Lang::Win32.
1296
1297   bundle your own code
1298       "ffi/foo.c":
1299
1300        #include <ffi_platypus_bundle.h>
1301        #include <string.h>
1302
1303        typedef struct {
1304          char *name;
1305          int value;
1306        } foo_t;
1307
1308        foo_t*
1309        foo__new(const char *class_name, const char *name, int value)
1310        {
1311          (void)class_name;
1312          foo_t *self = malloc( sizeof( foo_t ) );
1313          self->name = strdup(name);
1314          self->value = value;
1315          return self;
1316        }
1317
1318        const char *
1319        foo__name(foo_t *self)
1320        {
1321          return self->name;
1322        }
1323
1324        int
1325        foo__value(foo_t *self)
1326        {
1327          return self->value;
1328        }
1329
1330        void
1331        foo__DESTROY(foo_t *self)
1332        {
1333          free(self->name);
1334          free(self);
1335        }
1336
1337       "lib/Foo.pm":
1338
1339        package Foo;
1340
1341        use strict;
1342        use warnings;
1343        use FFI::Platypus 1.00;
1344
1345        {
1346          my $ffi = FFI::Platypus->new( api => 1 );
1347
1348          $ffi->type('object(Foo)' => 'foo_t');
1349          $ffi->mangler(sub {
1350            my $name = shift;
1351            $name =~ s/^/foo__/;
1352            $name;
1353          });
1354
1355          $ffi->bundle;
1356
1357          $ffi->attach( new =>     [ 'string', 'string', 'int' ] => 'foo_t'  );
1358          $ffi->attach( name =>    [ 'foo_t' ]                   => 'string' );
1359          $ffi->attach( value =>   [ 'foo_t' ]                   => 'int'    );
1360          $ffi->attach( DESTROY => [ 'foo_t' ]                   => 'void'   );
1361        }
1362
1363        1;
1364
1365       You can bundle your own C (or other compiled language) code with your
1366       Perl extension.  Sometimes this is helpful for smoothing over the
1367       interface of a C library which is not very FFI friendly.  Sometimes you
1368       may want to write some code in C for a tight loop.  Either way, you can
1369       do this with the Platypus bundle interface.  See FFI::Platypus::Bundle
1370       for more details.
1371
1372       Also related is the bundle constant interface, which allows you to
1373       define Perl constants in C space.  See FFI::Platypus::Constant for
1374       details.
1375

FAQ

1377   How do I get constants defined as macros in C header files
1378       This turns out to be a challenge for any language calling into C, which
1379       frequently uses "#define" macros to define constants like so:
1380
1381        #define FOO_STATIC  1
1382        #define FOO_DYNAMIC 2
1383        #define FOO_OTHER   3
1384
1385       As macros are expanded and their definitions are thrown away by the C
1386       pre-processor there isn't any way to get the name/value mappings from
1387       the compiled dynamic library.
1388
1389       You can manually create equivalent constants in your Perl source:
1390
1391        use constant FOO_STATIC  => 1;
1392        use constant FOO_DYNAMIC => 2;
1393        use constant FOO_OTHER   => 3;
1394
1395       If there are a lot of these types of constants you might want to
1396       consider using a tool (Convert::Binary::C can do this) that can extract
1397       the constants for you.
1398
1399       See also the "Integer constants" example in FFI::Platypus::Type.
1400
1401       You can also use the new Platypus bundle interface to define Perl
1402       constants from C space.  This is more reliable, but does require a
1403       compiler at install time.  It is recommended mainly for writing
1404       bindings against libraries that have constants that can vary widely
1405       from platform to platform.  See FFI::Platypus::Constant for details.
1406
1407   What about enums?
1408       The C enum types are integers.  The underlying type is up to the
1409       platform, so Platypus provides "enum" and "senum" types for unsigned
1410       and singed enums respectively.  At least some compilers treat signed
1411       and unsigned enums as different types.  The enum values are essentially
1412       the same as macro constants described above from an FFI perspective.
1413       Thus the process of defining enum values is identical to the process of
1414       defining macro constants in Perl.
1415
1416       For more details on enumerated types see "Enum types" in
1417       FFI::Platypus::Type.
1418
1419       There is also a type plugin (FFI::Platypus::Type::Enum) that can be
1420       helpful in writing interfaces that use enums.
1421
1422   Memory leaks
1423       There are a couple places where memory is allocated, but never
1424       deallocated that may look like memory leaks by tools designed to find
1425       memory leaks like valgrind.  This memory is intended to be used for the
1426       lifetime of the perl process so there normally this isn't a problem
1427       unless you are embedding a Perl interpreter which doesn't closely match
1428       the lifetime of your overall application.
1429
1430       Specifically:
1431
1432       type cache
1433           some types are cached and not freed.  These are needed as long as
1434           there are FFI functions that could be called.
1435
1436       attached functions
1437           Attaching a function as an xsub will definitely allocate memory
1438           that won't be freed because the xsub could be called at any time,
1439           including in "END" blocks.
1440
1441       The Platypus team plans on adding a hook to free some of this "leaked"
1442       memory for use cases where Perl and Platypus are embedded in a larger
1443       application where the lifetime of the Perl process is significantly
1444       smaller than the overall lifetime of the whole process.
1445
1446   I get seg faults on some platforms but not others with a library using
1447       pthreads.
1448       On some platforms, Perl isn't linked with "libpthreads" if Perl threads
1449       are not enabled.  On some platforms this doesn't seem to matter,
1450       "libpthreads" can be loaded at runtime without much ill-effect.  (Linux
1451       from my experience doesn't seem to mind one way or the other).  Some
1452       platforms are not happy about this, and about the only thing that you
1453       can do about it is to build Perl such that it links with "libpthreads"
1454       even if it isn't a threaded Perl.
1455
1456       This is not really an FFI issue, but a Perl issue, as you will have the
1457       same problem writing XS code for the such libraries.
1458
1459   Doesn't work on Perl 5.10.0.
1460       I try as best as possible to support the same range of Perls as the
1461       Perl toolchain.  That means all the way back to 5.8.1.  Unfortunately,
1462       5.10.0 seems to have a problem that is difficult to diagnose.  Patches
1463       to fix are welcome, if you want to help out on this, please see:
1464
1465       <https://github.com/PerlFFI/FFI-Platypus/issues/68>
1466
1467       Since this is an older buggy version of Perl it is recommended that you
1468       instead upgrade to 5.10.1 or later.
1469

CAVEATS

1471       Platypus and Native Interfaces like libffi rely on the availability of
1472       dynamic libraries.  Things not supported include:
1473
1474       Systems that lack dynamic library support
1475           Like MS-DOS
1476
1477       Systems that are not supported by libffi
1478           Like OpenVMS
1479
1480       Languages that do not support using dynamic libraries from other
1481       languages
1482           Like older versions of Google's Go. This is a problem for C / XS
1483           code as well.
1484
1485       Languages that do not compile to machine code
1486           Like .NET based languages and Java.
1487
1488       The documentation has a bias toward using FFI / Platypus with C.  This
1489       is my fault, as my background in mainly in C/C++ programmer (when I am
1490       not writing Perl).  In many places I use "C" as a short form for "any
1491       language that can generate machine code and is callable from C".  I
1492       welcome pull requests to the Platypus core to address this issue.  In
1493       an attempt to ease usage of Platypus by non C programmers, I have
1494       written a number of foreign language plugins for various popular
1495       languages (see the SEE ALSO below).  These plugins come with examples
1496       specific to those languages, and documentation on common issues related
1497       to using those languages with FFI.  In most cases these are available
1498       for easy adoption for those with the know-how or the willingness to
1499       learn.  If your language doesn't have a plugin YET, that is just
1500       because you haven't written it yet.
1501

SUPPORT

1503       IRC: #native on irc.perl.org
1504
1505       (click for instant chat room login)
1506       <http://chat.mibbit.com/#native@irc.perl.org>
1507
1508       If something does not work the way you think it should, or if you have
1509       a feature request, please open an issue on this project's GitHub Issue
1510       tracker:
1511
1512       <https://github.com/perlFFI/FFI-Platypus/issues>
1513

CONTRIBUTING

1515       If you have implemented a new feature or fixed a bug then you may make
1516       a pull request on this project's GitHub repository:
1517
1518       <https://github.com/PerlFFI/FFI-Platypus/pulls>
1519
1520       This project is developed using Dist::Zilla.  The project's git
1521       repository also comes with the "Makefile.PL" file necessary for
1522       building, testing (and even installing if necessary) without
1523       Dist::Zilla.  Please keep in mind though that these files are generated
1524       so if changes need to be made to those files they should be done
1525       through the project's "dist.ini" file.  If you do use Dist::Zilla and
1526       already have the necessary plugins installed, then I encourage you to
1527       run "dzil test" before making any pull requests.  This is not a
1528       requirement, however, I am happy to integrate especially smaller
1529       patches that need tweaking to fit the project standards.  I may push
1530       back and ask you to write a test case or alter the formatting of a
1531       patch depending on the amount of time I have and the amount of code
1532       that your patch touches.
1533
1534       This project's GitHub issue tracker listed above is not Write-Only.  If
1535       you want to contribute then feel free to browse through the existing
1536       issues and see if there is something you feel you might be good at and
1537       take a whack at the problem.  I frequently open issues myself that I
1538       hope will be accomplished by someone in the future but do not have time
1539       to immediately implement myself.
1540
1541       Another good area to help out in is documentation.  I try to make sure
1542       that there is good document coverage, that is there should be
1543       documentation describing all the public features and warnings about
1544       common pitfalls, but an outsider's or alternate view point on such
1545       things would be welcome; if you see something confusing or lacks
1546       sufficient detail I encourage documentation only pull requests to
1547       improve things.
1548
1549       The Platypus distribution comes with a test library named "libtest"
1550       that is normally automatically built by "./Build test".  If you prefer
1551       to use "prove" or run tests directly, you can use the "./Build libtest"
1552       command to build it.  Example:
1553
1554        % perl Makefile.PL
1555        % make
1556        % make ffi-test
1557        % prove -bv t
1558        # or an individual test
1559        % perl -Mblib t/ffi_platypus_memory.t
1560
1561       The build process also respects these environment variables:
1562
1563       FFI_PLATYPUS_DEBUG_FAKE32
1564           When building Platypus on 32 bit Perls, it will use the Math::Int64
1565           C API and make Math::Int64 a prerequisite.  Setting this
1566           environment variable will force Platypus to build with both of
1567           those options on a 64 bit Perl as well.
1568
1569            % env FFI_PLATYPUS_DEBUG_FAKE32=1 perl Makefile.PL
1570            DEBUG_FAKE32:
1571              + making Math::Int64 a prereq
1572              + Using Math::Int64's C API to manipulate 64 bit values
1573            Generating a Unix-style Makefile
1574            Writing Makefile for FFI::Platypus
1575            Writing MYMETA.yml and MYMETA.json
1576            %
1577
1578       FFI_PLATYPUS_NO_ALLOCA
1579           Platypus uses the non-standard and somewhat controversial C
1580           function "alloca" by default on platforms that support it.  I
1581           believe that Platypus uses it responsibly to allocate small amounts
1582           of memory for argument type parameters, and does not use it to
1583           allocate large structures like arrays or buffers.  If you prefer
1584           not to use "alloca" despite these precautions, then you can turn
1585           its use off by setting this environment variable when you run
1586           "Makefile.PL":
1587
1588            helix% env FFI_PLATYPUS_NO_ALLOCA=1 perl Makefile.PL
1589            NO_ALLOCA:
1590              + alloca() will not be used, even if your platform supports it.
1591            Generating a Unix-style Makefile
1592            Writing Makefile for FFI::Platypus
1593            Writing MYMETA.yml and MYMETA.json
1594
1595       V   When building platypus may hide some of the excessive output when
1596           probing and building, unless you set "V" to a true value.
1597
1598            % env V=1 perl Makefile.PL
1599            % make V=1
1600            ...
1601
1602   Coding Guidelines
1603       •   Do not hesitate to make code contribution.  Making useful
1604           contributions is more important than following byzantine
1605           bureaucratic coding regulations.  We can always tweak things later.
1606
1607       •   Please make an effort to follow existing coding style when making
1608           pull requests.
1609
1610       •   Platypus supports all production Perl releases since 5.8.1.  For
1611           that reason, please do not introduce any code that requires a newer
1612           version of Perl.
1613
1614   Performance Testing
1615       As Mark Twain was fond of saying there are four types of lies: lies,
1616       damn lies, statistics and benchmarks.  That being said, it can
1617       sometimes be helpful to compare the runtime performance of Platypus if
1618       you are making significant changes to the Platypus Core.  For that I
1619       use `FFI-Performance`, which can be found in my GitHub repository here:
1620
1621       <https://github.com/PerlFFI/FFI-Performance>
1622
1623   System integrators
1624       This distribution uses Alien::FFI in fallback mode, meaning if the
1625       system doesn't provide "pkg-config" and "libffi" it will attempt to
1626       download "libffi" and build it from source.  If you are including
1627       Platypus in a larger system (for example a Linux distribution) you only
1628       need to make sure to declare "pkg-config" or "pkgconf" and the
1629       development package for "libffi" as prereqs for this module.
1630

SEE ALSO

1632   Extending Platypus
1633       FFI::Platypus::Type
1634           Type definitions for Platypus.
1635
1636       FFI::Platypus::Record
1637           Define structured data records (C "structs") for use with Platypus.
1638
1639       FFI::C
1640           Another interface for defining structured data records for use with
1641           Platypus.  Its advantage over FFI::Platypus::Record is that it
1642           supports "union"s and nested data structures.  Its disadvantage is
1643           that it doesn't support passing "struct"s by-value.
1644
1645       FFI::Platypus::API
1646           The custom types API for Platypus.
1647
1648       FFI::Platypus::Memory
1649           Memory functions for FFI.
1650
1651   Languages
1652       FFI::TinyCC
1653           JIT C compiler for FFI.
1654
1655       FFI::Platypus::Lang::C
1656           Documentation and tools for using Platypus with the C programming
1657           language
1658
1659       FFI::Platypus::Lang::CPP
1660           Documentation and tools for using Platypus with the C++ programming
1661           language
1662
1663       FFI::Platypus::Lang::Fortran
1664           Documentation and tools for using Platypus with Fortran
1665
1666       FFI::Platypus::Lang::Go
1667           Documentation and tools for using Platypus with Go
1668
1669       FFI::Platypus::Lang::Pascal
1670           Documentation and tools for using Platypus with Free Pascal
1671
1672       FFI::Platypus::Lang::Rust
1673           Documentation and tools for using Platypus with the Rust
1674           programming language
1675
1676       FFI::Platypus::Lang::ASM
1677           Documentation and tools for using Platypus with the Assembly
1678
1679       FFI::Platypus::Lang::Win32
1680           Documentation and tools for using Platypus with the Win32 API.
1681
1682       Wasm and Wasm::Wasmtime
1683           Modules for writing WebAssembly bindings in Perl.  This allows you
1684           to call functions written in any language supported by WebAssembly.
1685           These modules are also implemented using Platypus.
1686
1687   Other Tools Related Tools Useful for FFI
1688       FFI::CheckLib
1689           Find dynamic libraries in a portable way.
1690
1691       Convert::Binary::C
1692           A great interface for decoding C data structures, including
1693           "struct"s, "enum"s, "#define"s and more.
1694
1695       pack and unpack
1696           Native to Perl functions that can be used to decode C "struct"
1697           types.
1698
1699       C::Scan
1700           This module can extract constants and other useful objects from C
1701           header files that may be relevant to an FFI application.  One
1702           downside is that its use may require development packages to be
1703           installed.
1704
1705   Other Foreign Function Interfaces
1706       Dyn A wrapper around dyncall <https://dyncall.org>, which is itself an
1707           alternative to libffi <https://sourceware.org/libffi/>.
1708
1709       NativeCall
1710           Promising interface to Platypus inspired by Raku.
1711
1712       Win32::API
1713           Microsoft Windows specific FFI style interface.
1714
1715       Ctypes <https://gitorious.org/perl-ctypes>
1716           Ctypes was intended as a FFI style interface for Perl, but was
1717           never part of CPAN, and at least the last time I tried it did not
1718           work with recent versions of Perl.
1719
1720       FFI Older, simpler, less featureful FFI.  It used to be implemented
1721           using FSF's "ffcall".  Because "ffcall" has been unsupported for
1722           some time, I reimplemented this module using FFI::Platypus.
1723
1724       C::DynaLib
1725           Another FFI for Perl that doesn't appear to have worked for a long
1726           time.
1727
1728       C::Blocks
1729           Embed a tiny C compiler into your Perl scripts.
1730
1731       P5NCI
1732           Yet another FFI like interface that does not appear to be supported
1733           or under development anymore.
1734
1735   Other
1736       Alien::FFI
1737           Provides libffi for Platypus during its configuration and build
1738           stages.
1739

ACKNOWLEDGMENTS

1741       In addition to the contributors mentioned below, I would like to
1742       acknowledge Brock Wilcox (AWWAIID) and Meredith Howard (MHOWARD) whose
1743       work on "FFI::Sweet" not only helped me get started with FFI but
1744       significantly influenced the design of Platypus.
1745
1746       Dan Book, who goes by Grinnz on IRC for answering user questions about
1747       FFI and Platypus.
1748
1749       In addition I'd like to thank Alessandro Ghedini (ALEXBIO) whose work
1750       on another Perl FFI library helped drive some of the development ideas
1751       for FFI::Platypus.
1752

AUTHOR

1754       Author: Graham Ollis <plicease@cpan.org>
1755
1756       Contributors:
1757
1758       Bakkiaraj Murugesan (bakkiaraj)
1759
1760       Dylan Cali (calid)
1761
1762       pipcet
1763
1764       Zaki Mughal (zmughal)
1765
1766       Fitz Elliott (felliott)
1767
1768       Vickenty Fesunov (vyf)
1769
1770       Gregor Herrmann (gregoa)
1771
1772       Shlomi Fish (shlomif)
1773
1774       Damyan Ivanov
1775
1776       Ilya Pavlov (Ilya33)
1777
1778       Petr Písař (ppisar)
1779
1780       Mohammad S Anwar (MANWAR)
1781
1782       Håkon Hægland (hakonhagland, HAKONH)
1783
1784       Meredith (merrilymeredith, MHOWARD)
1785
1786       Diab Jerius (DJERIUS)
1787
1788       Eric Brine (IKEGAMI)
1789
1790       szTheory
1791
1792       José Joaquín Atria (JJATRIA)
1793
1794       Pete Houston (openstrike, HOUSTON)
1795
1797       This software is copyright (c) 2015-2022 by Graham Ollis.
1798
1799       This is free software; you can redistribute it and/or modify it under
1800       the same terms as the Perl 5 programming language system itself.
1801
1802
1803
1804perl v5.34.1                      2022-06-20                  FFI::Platypus(3)
Impressum