1BN_ADD(3) OpenSSL BN_ADD(3)
2
3
4
6 BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
7 BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp,
8 BN_gcd - arithmetic operations on BIGNUMs
9
11 #include <openssl/bn.h>
12
13 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
14
15 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
16
17 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
18
19 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
20
21 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
22 BN_CTX *ctx);
23
24 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
25
26 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
27
28 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
29 BN_CTX *ctx);
30
31 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
32 BN_CTX *ctx);
33
34 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
35 BN_CTX *ctx);
36
37 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
38
39 BIGNUM *BN_mod_sqrt(BIGNUM *in, BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
40
41 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
42
43 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
44 const BIGNUM *m, BN_CTX *ctx);
45
46 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
47
49 BN_add() adds a and b and places the result in r ("r=a+b"). r may be
50 the same BIGNUM as a or b.
51
52 BN_sub() subtracts b from a and places the result in r ("r=a-b"). r
53 may be the same BIGNUM as a or b.
54
55 BN_mul() multiplies a and b and places the result in r ("r=a*b"). r
56 may be the same BIGNUM as a or b. For multiplication by powers of 2,
57 use BN_lshift(3).
58
59 BN_sqr() takes the square of a and places the result in r ("r=a^2"). r
60 and a may be the same BIGNUM. This function is faster than
61 BN_mul(r,a,a).
62
63 BN_div() divides a by d and places the result in dv and the remainder
64 in rem ("dv=a/d, rem=a%d"). Either of dv and rem may be NULL, in which
65 case the respective value is not returned. The result is rounded
66 towards zero; thus if a is negative, the remainder will be zero or
67 negative. For division by powers of 2, use BN_rshift(3).
68
69 BN_mod() corresponds to BN_div() with dv set to NULL.
70
71 BN_nnmod() reduces a modulo m and places the nonnegative remainder in
72 r.
73
74 BN_mod_add() adds a to b modulo m and places the nonnegative result in
75 r.
76
77 BN_mod_sub() subtracts b from a modulo m and places the nonnegative
78 result in r.
79
80 BN_mod_mul() multiplies a by b and finds the nonnegative remainder
81 respective to modulus m ("r=(a*b) mod m"). r may be the same BIGNUM as
82 a or b. For more efficient algorithms for repeated computations using
83 the same modulus, see BN_mod_mul_montgomery(3) and
84 BN_mod_mul_reciprocal(3).
85
86 BN_mod_sqr() takes the square of a modulo m and places the result in r.
87
88 BN_mod_sqrt() returns the modular square root of a such that "in^2 = a
89 (mod p)". The modulus p must be a prime, otherwise an error or an
90 incorrect "result" will be returned. The result is stored into in
91 which can be NULL. The result will be newly allocated in that case.
92
93 BN_exp() raises a to the p-th power and places the result in r
94 ("r=a^p"). This function is faster than repeated applications of
95 BN_mul().
96
97 BN_mod_exp() computes a to the p-th power modulo m ("r=a^p % m"). This
98 function uses less time and space than BN_exp(). Do not call this
99 function when m is even and any of the parameters have the
100 BN_FLG_CONSTTIME flag set.
101
102 BN_gcd() computes the greatest common divisor of a and b and places the
103 result in r. r may be the same BIGNUM as a or b.
104
105 For all functions, ctx is a previously allocated BN_CTX used for
106 temporary variables; see BN_CTX_new(3).
107
108 Unless noted otherwise, the result BIGNUM must be different from the
109 arguments.
110
112 The BN_mod_sqrt() returns the result (possibly incorrect if p is not a
113 prime), or NULL.
114
115 For all remaining functions, 1 is returned for success, 0 on error. The
116 return value should always be checked (e.g., "if (!BN_add(r,a,b)) goto
117 err;"). The error codes can be obtained by ERR_get_error(3).
118
120 ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)
121
123 Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
124
125 Licensed under the OpenSSL license (the "License"). You may not use
126 this file except in compliance with the License. You can obtain a copy
127 in the file LICENSE in the source distribution or at
128 <https://www.openssl.org/source/license.html>.
129
130
131
1321.1.1q 2022-07-07 BN_ADD(3)