1math::numtheory(n)             Tcl Math Library             math::numtheory(n)
2
3
4
5______________________________________________________________________________
6

NAME

8       math::numtheory - Number Theory
9

SYNOPSIS

11       package require Tcl  ?8.5?
12
13       package require math::numtheory  ?1.1.1?
14
15       math::numtheory::isprime N ?option value ...?
16
17       math::numtheory::firstNprimes N
18
19       math::numtheory::primesLowerThan N
20
21       math::numtheory::primeFactors N
22
23       math::numtheory::primesLowerThan N
24
25       math::numtheory::primeFactors N
26
27       math::numtheory::uniquePrimeFactors N
28
29       math::numtheory::factors N
30
31       math::numtheory::totient N
32
33       math::numtheory::moebius N
34
35       math::numtheory::legendre a p
36
37       math::numtheory::jacobi a b
38
39       math::numtheory::gcd m n
40
41       math::numtheory::lcm m n
42
43       math::numtheory::numberPrimesGauss N
44
45       math::numtheory::numberPrimesLegendre N
46
47       math::numtheory::numberPrimesLegendreModified N
48
49       math::numtheory::differenceNumberPrimesLegendreModified lower upper
50
51______________________________________________________________________________
52

DESCRIPTION

54       This  package  is  for  collecting various number-theoretic operations,
55       with a slight bias to prime numbers.
56
57       math::numtheory::isprime N ?option value ...?
58              The isprime command tests whether the integer N is a prime,  re‐
59              turning  a  boolean  true  value for prime N and a boolean false
60              value for non-prime N. The formal definition of ´prime' used  is
61              the conventional, that the number being tested is greater than 1
62              and only has trivial divisors.
63
64              To be precise, the return value is one of 0 (if N is  definitely
65              not  a  prime),  1 (if N is definitely a prime), and on (if N is
66              probably prime); the latter two are both  boolean  true  values.
67              The  case  that an integer may be classified as "probably prime"
68              arises because the Miller-Rabin algorithm used in the  test  im‐
69              plementation  is  basically probabilistic, and may if we are un‐
70              lucky fail to detect that a number is in fact composite. Options
71              may  be used to select the risk of such "false positives" in the
72              test. 1 is returned for "small" N (which  currently  means  N  <
73              118670087467),  where  it  is  known that no false positives are
74              possible.
75
76              The only option currently defined is:
77
78              -randommr repetitions
79                     which controls  how  many  times  the  Miller-Rabin  test
80                     should be repeated with randomly chosen bases. Each repe‐
81                     tition reduces the probability of a false positive  by  a
82                     factor at least 4. The default for repetitions is 4.
83
84              Unknown options are silently ignored.
85
86       math::numtheory::firstNprimes N
87              Return the first N primes
88
89              integer N (in)
90                     Number of primes to return
91
92       math::numtheory::primesLowerThan N
93              Return the prime numbers lower/equal to N
94
95              integer N (in)
96                     Maximum number to consider
97
98       math::numtheory::primeFactors N
99              Return a list of the prime numbers in the number N
100
101              integer N (in)
102                     Number to be factorised
103
104       math::numtheory::primesLowerThan N
105              Return the prime numbers lower/equal to N
106
107              integer N (in)
108                     Maximum number to consider
109
110       math::numtheory::primeFactors N
111              Return a list of the prime numbers in the number N
112
113              integer N (in)
114                     Number to be factorised
115
116       math::numtheory::uniquePrimeFactors N
117              Return a list of the unique prime numbers in the number N
118
119              integer N (in)
120                     Number to be factorised
121
122       math::numtheory::factors N
123              Return a list of all unique factors in the number N, including 1
124              and N itself
125
126              integer N (in)
127                     Number to be factorised
128
129       math::numtheory::totient N
130              Evaluate the Euler totient function for the number N (number  of
131              numbers relatively prime to N)
132
133              integer N (in)
134                     Number in question
135
136       math::numtheory::moebius N
137              Evaluate the Moebius function for the number N
138
139              integer N (in)
140                     Number in question
141
142       math::numtheory::legendre a p
143              Evaluate the Legendre symbol (a/p)
144
145              integer a (in)
146                     Upper number in the symbol
147
148              integer p (in)
149                     Lower number in the symbol (must be non-zero)
150
151       math::numtheory::jacobi a b
152              Evaluate the Jacobi symbol (a/b)
153
154              integer a (in)
155                     Upper number in the symbol
156
157              integer b (in)
158                     Lower number in the symbol (must be odd)
159
160       math::numtheory::gcd m n
161              Return the greatest common divisor of m and n
162
163              integer m (in)
164                     First number
165
166              integer n (in)
167                     Second number
168
169       math::numtheory::lcm m n
170              Return the lowest common multiple of m and n
171
172              integer m (in)
173                     First number
174
175              integer n (in)
176                     Second number
177
178       math::numtheory::numberPrimesGauss N
179              Estimate the number of primes according the formula by Gauss.
180
181              integer N (in)
182                     Number in question, should be larger than 0
183
184       math::numtheory::numberPrimesLegendre N
185              Estimate the number of primes according the formula by Legendre.
186
187              integer N (in)
188                     Number in question, should be larger than 0
189
190       math::numtheory::numberPrimesLegendreModified N
191              Estimate  the number of primes according the modified formula by
192              Legendre.
193
194              integer N (in)
195                     Number in question, should be larger than 0
196
197       math::numtheory::differenceNumberPrimesLegendreModified lower upper
198              Estimate the number of primes between tow limits  according  the
199              modified formula by Legendre.
200
201              integer lower (in)
202                     Lower limit for the primes, should be larger than 0
203
204              integer upper (in)
205                     Upper limit for the primes, should be larger than 0
206

BUGS, IDEAS, FEEDBACK

208       This  document,  and the package it describes, will undoubtedly contain
209       bugs and other problems.  Please report such in the  category  math  ::
210       numtheory   of   the   Tcllib  Trackers  [http://core.tcl.tk/tcllib/re
211       portlist].  Please also report any ideas for enhancements you may  have
212       for either package and/or documentation.
213
214       When proposing code changes, please provide unified diffs, i.e the out‐
215       put of diff -u.
216
217       Note further that  attachments  are  strongly  preferred  over  inlined
218       patches.  Attachments  can  be  made  by  going to the Edit form of the
219       ticket immediately after its creation, and  then  using  the  left-most
220       button in the secondary navigation bar.
221

KEYWORDS

223       number theory, prime
224

CATEGORY

226       Mathematics
227
229       Copyright (c) 2010 Lars Hellström <Lars dot Hellstrom at residenset dot net>
230
231
232
233
234tcllib                               1.1.1                  math::numtheory(n)
Impressum