1ei(3)                         C Library Functions                        ei(3)
2
3
4

NAME

6       ei - Routines for handling the Erlang binary term format.
7

DESCRIPTION

9       The  library  ei contains macros and functions to encode and decode the
10       Erlang binary term format.
11
12       ei allows you to convert atoms, lists, numbers,  and  binaries  to  and
13       from  the  binary format. This is useful when writing port programs and
14       drivers. ei uses a given  buffer,  no  dynamic  memory  (except  ei_de‐
15       code_fun()) and is often quite fast.
16
17       ei also handles C-nodes, C-programs that talks Erlang distribution with
18       Erlang nodes (or other C-nodes)  using  the  Erlang  distribution  for‐
19       mat.The  ei  library is thread safe, and using threads, one process can
20       handle multiple C-nodes.
21
22       The decode and encode functions use a buffer and an index into the buf‐
23       fer, which points at the point where to encode and decode. The index is
24       updated to point right after the term encoded/decoded. No  checking  is
25       done  whether the term fits in the buffer or not. If encoding goes out‐
26       side the buffer, the program can crash.
27
28       All functions take two parameters:
29
30         * buf is a pointer to the buffer where the binary data is or will be.
31
32         * index is a pointer to an index into the buffer. This  parameter  is
33           incremented with the size of the term decoded/encoded.
34
35       The data is thus at buf[*index] when an ei function is called.
36
37       All  encode functions assume that the buf and index parameters point to
38       a buffer large enough for the data. To get the size of an encoded term,
39       without  encoding  it, pass NULL instead of a buffer pointer. Parameter
40       index is incremented, but nothing will be encoded. This is the  way  in
41       ei to "preflight" term encoding.
42
43       There  are also encode functions that use a dynamic buffer. It is often
44       more convenient to use these to encode data. All encode functions comes
45       in two versions; those starting with ei_x_ use a dynamic buffer of type
46       ei_x_buff.
47
48       All functions return 0 if successful, otherwise -1 (for example,  if  a
49       term  is  not of the expected type, or the data to decode is an invalid
50       Erlang term).
51
52       Some of the decode functions need a pre-allocated buffer.  This  buffer
53       must  be  allocated  large  enough,  and  for  non-compound  types  the
54       ei_get_type() function returns  the  size  required  (notice  that  for
55       strings an extra byte is needed for the NULL-terminator).
56

DATA TYPES

58         ei_term:
59
60
61         typedef struct {
62             char ei_type;
63             int arity;
64             int size;
65             union {
66              long i_val;
67              double d_val;
68              char atom_name[MAXATOMLEN_UTF8];
69              erlang_pid pid;
70              erlang_port port;
71              erlang_ref ref;
72             } value;
73         } ei_term;
74
75           Structure  written by ei_decode_ei_term(). The ei_type field is the
76           type of the term which equals to what ei_get_type() sets *type to.
77
78         ei_x_buff:
79           A dynamically resized buffer. It is a struct with two fields of in‐
80           terest for the user:
81
82           char *buff:
83             Pointer to the dynamically allocated buffer.
84
85           int index:
86             Offset  to the next byte to write which also equals the amount of
87             bytes currently written.
88
89           An  ei_x_buff  is  initialized  by  calling  either  ei_x_new()  or
90           ei_x_new_with_version().   The   memory   used  by  an  initialized
91           ei_x_buff is released by calling ei_x_free().
92
93         erlang_char_encoding:
94
95
96         typedef enum {
97             ERLANG_ASCII = 1,
98             ERLANG_LATIN1 = 2,
99             ERLANG_UTF8 = 4
100         } erlang_char_encoding;
101
102           The character encodings used  for  atoms.  ERLANG_ASCII  represents
103           7-bit  ASCII.  Latin-1  and UTF-8 are different extensions of 7-bit
104           ASCII. All 7-bit ASCII characters are valid Latin-1 and UTF-8 char‐
105           acters.  ASCII  and  Latin-1  both  represent each character by one
106           byte. An UTF-8 character can consist  of  1-4  bytes.  Notice  that
107           these constants are bit-flags and can be combined with bitwise OR.
108
109         erlang_fun:
110           Opaque data type representing an Erlang fun.
111
112         erlang_pid:
113           Opaque data type representing an Erlang process identifier.
114
115         erlang_port:
116           Opaque data type representing an Erlang port identifier.
117
118         erlang_ref:
119           Opaque data type representing an Erlang reference.
120
121         erlang_trace:
122           Opaque data type representing an Erlang sequential trace token.
123

EXPORTS

125       int ei_cmp_pids(erlang_pid *a, erlang_pid *b)
126
127              Types:
128
129                 erlang_pid
130
131              Compare two process identifiers. The comparison is done the same
132              way as Erlang does.
133
134              Returns 0 if a and b are equal. Returns a value less than 0 if a
135              compares as less than b. Returns a value larger than 0 if a com‐
136              pares as larger than b.
137
138       int ei_cmp_ports(erlang_port *a, erlang_port *b)
139
140              Types:
141
142                 erlang_port
143
144              Compare two port identifiers. The comparison is  done  the  same
145              way as Erlang does.
146
147              Returns 0 if a and b are equal. Returns a value less than 0 if a
148              compares as less than b. Returns a value larger than 0 if a com‐
149              pares as larger than b.
150
151       int ei_cmp_refs(erlang_ref *a, erlang_ref *b)
152
153              Types:
154
155                 erlang_ref
156
157              Compare  two  references. The comparison is done the same way as
158              Erlang does.
159
160              Returns 0 if a and b are equal. Returns a value less than 0 if a
161              compares as less than b. Returns a value larger than 0 if a com‐
162              pares as larger than b.
163
164       int ei_decode_atom(const char *buf, int *index, char *p)
165
166              Decodes an atom from the binary format. The NULL-terminated name
167              of  the  atom  is  placed  at p. At most MAXATOMLEN bytes can be
168              placed in the buffer.
169
170       int ei_decode_atom_as(const char *buf, int *index, char *p,  int  plen,
171       erlang_char_encoding  want,  erlang_char_encoding* was, erlang_char_en‐
172       coding* result)
173
174              Types:
175
176                 erlang_char_encoding
177
178              Decodes an atom from the binary format. The NULL-terminated name
179              of the atom is placed in buffer at p of length plen bytes.
180
181              The  wanted  string  encoding is specified by want. The original
182              encoding used in the binary format (Latin-1 or UTF-8) can be ob‐
183              tained  from  *was.  The encoding of the resulting string (7-bit
184              ASCII, Latin-1, or UTF-8) can be obtained from *result. Both was
185              and  result can be NULL. *result can differ from want if want is
186              a bitwise OR'd combination like ERLANG_LATIN1|ERLANG_UTF8 or  if
187              *result  turns  out to be pure 7-bit ASCII (compatible with both
188              Latin-1 and UTF-8).
189
190              This function fails if the atom is too long for the buffer or if
191              it cannot be represented with encoding want.
192
193              This  function  was  introduced  in  Erlang/OTP R16 as part of a
194              first step to support UTF-8 atoms.
195
196       int ei_decode_bignum(const char *buf, int *index, mpz_t obj)
197
198              Decodes an integer in the binary format to a GMP mpz_t  integer.
199              To use this function, the ei library must be configured and com‐
200              piled to use the GMP library.
201
202       int ei_decode_binary(const char *buf, int *index, void *p, long *len)
203
204              Decodes a binary from the binary format. Parameter len is set to
205              the  actual  size  of the binary. Notice that ei_decode_binary()
206              assumes that there is enough room for the binary. The  size  re‐
207              quired can be fetched by ei_get_type().
208
209       int  ei_decode_bitstring(const  char *buf, int *index, const char **pp,
210       unsigned int *bitoffsp, size_t *nbitsp)
211
212              Decodes a bit string from the binary format.
213
214                pp:
215                  Either NULL or *pp returns a pointer to the  first  byte  of
216                  the  bit string. The returned bit string is readable as long
217                  as the buffer pointed to by buf is readable and not  written
218                  to.
219
220                bitoffsp:
221                  Either  NULL  or *bitoffsp returns the number of unused bits
222                  in the first byte pointed to by *pp. The value of  *bitoffsp
223                  is  between  0  and 7. Unused bits in the first byte are the
224                  most significant bits.
225
226                nbitsp:
227                  Either NULL or *nbitsp returns the length of the bit  string
228                  in bits.
229
230              Returns 0 if it was a bit string term.
231
232              The number of bytes pointed to by *pp, which are part of the bit
233              string,  is  (*bitoffsp  +  *nbitsp  +  7)/8.  If  (*bitoffsp  +
234              *bitsp)%8  > 0 then only (*bitoffsp + *bitsp)%8 bits of the last
235              byte are used. Unused bits in the last byte are the  least  sig‐
236              nificant bits.
237
238              The  values  of unused bits in the first and last byte are unde‐
239              fined and cannot be relied on.
240
241              Number of bits may be divisible by 8, which means a  binary  de‐
242              codable  by ei_decode_binary is also decodable by ei_decode_bit‐
243              string.
244
245       int ei_decode_boolean(const char *buf, int *index, int *p)
246
247              Decodes a boolean value from the binary format. A boolean is ac‐
248              tually an atom, true decodes 1 and false decodes 0.
249
250       int ei_decode_char(const char *buf, int *index, char *p)
251
252              Decodes  a  char  (8-bit)  integer between 0-255 from the binary
253              format. For historical reasons the returned integer is  of  type
254              char.  Your  C  code  is to consider the returned value to be of
255              type unsigned char even if the C compilers and system can define
256              char to be signed.
257
258       int ei_decode_double(const char *buf, int *index, double *p)
259
260              Decodes  a  double-precision (64-bit) floating point number from
261              the binary format.
262
263       int ei_decode_ei_term(const char* buf, int* index, ei_term* term)
264
265              Types:
266
267                 ei_term
268
269              Decodes any term, or at least tries to. If the term  pointed  at
270              by  *index in buf fits in the term union, it is decoded, and the
271              appropriate field in term->value is set, and  *index  is  incre‐
272              mented by the term size.
273
274              The  function returns 1 on successful decoding, -1 on error, and
275              0 if the term seems alright, but does not fit in the term struc‐
276              ture.  If 1 is returned, the index is incremented, and term con‐
277              tains the decoded term.
278
279              The term structure contains the arity for a tuple or list,  size
280              for  a  binary, string, or atom. It contains a term if it is any
281              of the following: integer, float, atom, pid, port, or ref.
282
283       int ei_decode_fun(const char *buf, int *index, erlang_fun *p)
284       void free_fun(erlang_fun* f)
285
286              Types:
287
288                 erlang_fun
289
290              Decodes a fun from the binary format. Parameter p is to be  NULL
291              or  point  to  an  erlang_fun structure. This is the only decode
292              function that allocates memory. When the erlang_fun is no longer
293              needed,  it  is  to be freed with free_fun. (This has to do with
294              the arbitrary size of the environment for a fun.)
295
296       int ei_decode_iodata(const char *buf, int *index, int *size, char *out‐
297       buf)
298
299              Decodes  a  term of the type iodata(). The iodata() term will be
300              flattened an written into the buffer pointed to  by  the  outbuf
301              argument.  The byte size of the iodata is written into the inte‐
302              ger variable pointed to by the size argument. Both size and out‐
303              buf  can be set to NULL. The integer pointed to by the index ar‐
304              gument is updated to refer to the term following after  the  io‐
305              data() term regardless of the the state of the size and the out‐
306              buf arguments.
307
308              Note that the buffer pointed to by the outbuf argument  must  be
309              large  enough if a non NULL value is passed as outbuf. You typi‐
310              cally want to call ei_decode_iodata() twice. First  with  a  non
311              NULL size argument and a NULL outbuf argument in order to deter‐
312              mine the size of the buffer needed, and then once again in order
313              to  do  the actual decoding. Note that the integer pointed to by
314              index will be updated by the call determining the size as  well,
315              so  you need to reset it before the second call doing the actual
316              decoding.
317
318              Returns 0 on success and -1 on failure. Failure might be  either
319              due to invalid encoding of the term or due to the term not being
320              of the type iodata(). On failure, the integer pointed to by  the
321              index  argument  will  be updated to refer to the sub term where
322              the failure was detected.
323
324       int ei_decode_list_header(const char *buf, int *index, int *arity)
325
326              Decodes a list header from the binary format. The number of ele‐
327              ments  is  returned  in  arity. The arity+1 elements follow (the
328              last one is the tail of the list, normally an  empty  list).  If
329              arity is 0, it is an empty list.
330
331              Notice  that  lists  are  encoded as strings if they consist en‐
332              tirely of integers in the range 0..255. This function do not de‐
333              code such strings, use ei_decode_string() instead.
334
335       int ei_decode_long(const char *buf, int *index, long *p)
336
337              Decodes a long integer from the binary format. If the code is 64
338              bits, the  function  ei_decode_long()  is  the  same  as  ei_de‐
339              code_longlong().
340
341       int ei_decode_longlong(const char *buf, int *index, long long *p)
342
343              Decodes  a  GCC long long or Visual C++ __int64 (64-bit) integer
344              from the binary format.
345
346       int ei_decode_map_header(const char *buf, int *index, int *arity)
347
348              Decodes a map header from the binary format. The number of  key-
349              value  pairs  is  returned  in *arity. Keys and values follow in
350              this order: K1, V1, K2, V2, ..., Kn, Vn. This makes a  total  of
351              arity*2 terms. If arity is zero, it is an empty map. A correctly
352              encoded map does not have duplicate keys.
353
354       int ei_decode_pid(const char *buf, int *index, erlang_pid *p)
355
356              Types:
357
358                 erlang_pid
359
360              Decodes a process identifier (pid) from the binary format.
361
362       int ei_decode_port(const char *buf, int *index, erlang_port *p)
363
364              Types:
365
366                 erlang_port
367
368              Decodes a port identifier from the binary format.
369
370       int ei_decode_ref(const char *buf, int *index, erlang_ref *p)
371
372              Types:
373
374                 erlang_ref
375
376              Decodes a reference from the binary format.
377
378       int ei_decode_string(const char *buf, int *index, char *p)
379
380              Decodes a string from the binary format. A string in Erlang is a
381              list of integers between 0 and 255. Notice that as the string is
382              just  a  list,  sometimes  lists  are  encoded  as  strings   by
383              term_to_binary/1, even if it was not intended.
384
385              The  string  is copied to p, and enough space must be allocated.
386              The returned string is NULL-terminated, so you must add an extra
387              byte to the memory requirement.
388
389       int ei_decode_trace(const char *buf, int *index, erlang_trace *p)
390
391              Types:
392
393                 erlang_trace
394
395              Decodes an Erlang trace token from the binary format.
396
397       int ei_decode_tuple_header(const char *buf, int *index, int *arity)
398
399              Decodes  a  tuple  header, the number of elements is returned in
400              arity. The tuple elements follow in order in the buffer.
401
402       int ei_decode_ulong(const char *buf, int *index, unsigned long *p)
403
404              Decodes an unsigned long integer from the binary format. If  the
405              code  is  64 bits, the function ei_decode_ulong() is the same as
406              ei_decode_ulonglong().
407
408       int ei_decode_ulonglong(const char *buf, int *index, unsigned long long
409       *p)
410
411              Decodes  a GCC unsigned long long or Visual C++ unsigned __int64
412              (64-bit) integer from the binary format.
413
414       int ei_decode_version(const char *buf, int *index, int *version)
415
416              Decodes the version magic number for the Erlang binary term for‐
417              mat. It must be the first token in a binary term.
418
419       int ei_encode_atom(char *buf, int *index, const char *p)
420       int ei_encode_atom_len(char *buf, int *index, const char *p, int len)
421       int ei_x_encode_atom(ei_x_buff* x, const char *p)
422       int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)
423
424              Types:
425
426                 ei_x_buff
427
428              Encodes an atom in the binary format. Parameter p is the name of
429              the atom in Latin-1 encoding. Only up to MAXATOMLEN-1 bytes  are
430              encoded.  The  name  is  to  be  NULL-terminated, except for the
431              ei_x_encode_atom_len() function.
432
433       int  ei_encode_atom_as(char  *buf,  int  *index,  const  char  *p,  er‐
434       lang_char_encoding from_enc, erlang_char_encoding to_enc)
435       int  ei_encode_atom_len_as(char  *buf,  int  *index, const char *p, int
436       len, erlang_char_encoding from_enc, erlang_char_encoding to_enc)
437       int ei_x_encode_atom_as(ei_x_buff* x, const char *p, erlang_char_encod‐
438       ing from_enc, erlang_char_encoding to_enc)
439       int  ei_x_encode_atom_len_as(ei_x_buff*  x, const char *p, int len, er‐
440       lang_char_encoding from_enc, erlang_char_encoding to_enc)
441
442              Types:
443
444                 ei_x_buff
445                 erlang_char_encoding
446
447              Encodes an atom in the binary format. Parameter p is the name of
448              the  atom  with  character encoding from_enc (ASCII, Latin-1, or
449              UTF-8). The name must either be NULL-terminated  or  a  function
450              variant with a len parameter must be used.
451
452              The  encoding  fails  if  p  is  not  a valid string in encoding
453              from_enc.
454
455              Argument to_enc is ignored. As from Erlang/OTP 20  the  encoding
456              is always done in UTF-8 which is readable by nodes as old as Er‐
457              lang/OTP R16.
458
459       int ei_encode_bignum(char *buf, int *index, mpz_t obj)
460       int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)
461
462              Types:
463
464                 ei_x_buff
465
466              Encodes a GMP mpz_t integer to binary format. To use this  func‐
467              tion,  the ei library must be configured and compiled to use the
468              GMP library.
469
470       int ei_encode_binary(char *buf, int *index, const void *p, long len)
471       int ei_x_encode_binary(ei_x_buff* x, const void *p, long len)
472
473              Types:
474
475                 ei_x_buff
476
477              Encodes a binary in the binary format. The data is at p, of  len
478              bytes length.
479
480       int  ei_encode_bitstring(char  *buf,  int *index, const char *p, size_t
481       bitoffs, size_t nbits)
482       int ei_x_encode_bitstring(ei_x_buff* x, const char *p, size_t  bitoffs,
483       size_t nbits)
484
485              Types:
486
487                 ei_x_buff
488
489              Encodes a bit string in the binary format.
490
491              The  data  is  at p. The length of the bit string is nbits bits.
492              The first bitoffs bits of the data at p are  unused.  The  first
493              byte  which  is  part  of  the  bit  string is p[bitoffs/8]. The
494              bitoffs%8 most significant bits of the first  byte  p[bitoffs/8]
495              are unused.
496
497              The  number of bytes which is part of the bit string is (bitoffs
498              + nbits + 7)/8. If (bitoffs + nbits)%8 > 0 then only (bitoffs  +
499              nbits)%8 bits of the last byte are used. Unused bits in the last
500              byte are the least significant bits.
501
502              The values of unused bits are disregarded and does not  need  to
503              be cleared.
504
505       int ei_encode_boolean(char *buf, int *index, int p)
506       int ei_x_encode_boolean(ei_x_buff* x, int p)
507
508              Types:
509
510                 ei_x_buff
511
512              Encodes  a  boolean  value as the atom true if p is not zero, or
513              false if p is zero.
514
515       int ei_encode_char(char *buf, int *index, char p)
516       int ei_x_encode_char(ei_x_buff* x, char p)
517
518              Types:
519
520                 ei_x_buff
521
522              Encodes a char (8-bit) as an integer between 0-255 in the binary
523              format.  For  historical reasons the integer argument is of type
524              char. Your C code is to consider the specified argument to be of
525              type unsigned char even if the C compilers and system may define
526              char to be signed.
527
528       int ei_encode_double(char *buf, int *index, double p)
529       int ei_x_encode_double(ei_x_buff* x, double p)
530
531              Types:
532
533                 ei_x_buff
534
535              Encodes a double-precision (64-bit) floating point number in the
536              binary format.
537
538              Returns -1 if the floating point number is not finite.
539
540       int ei_encode_empty_list(char* buf, int* index)
541       int ei_x_encode_empty_list(ei_x_buff* x)
542
543              Types:
544
545                 ei_x_buff
546
547              Encodes an empty list. It is often used at the tail of a list.
548
549       int ei_encode_fun(char *buf, int *index, const erlang_fun *p)
550       int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)
551
552              Types:
553
554                 ei_x_buff
555                 erlang_fun
556
557              Encodes a fun in the binary format. Parameter p points to an er‐
558              lang_fun structure. The erlang_fun is not  freed  automatically,
559              the  free_fun is to be called if the fun is not needed after en‐
560              coding.
561
562       int ei_encode_list_header(char *buf, int *index, int arity)
563       int ei_x_encode_list_header(ei_x_buff* x, int arity)
564
565              Types:
566
567                 ei_x_buff
568
569              Encodes a list header, with a specified arity. The next  arity+1
570              terms  are  the elements (actually its arity cons cells) and the
571              tail of the list. Lists and tuples are encoded  recursively,  so
572              that a list can contain another list or tuple.
573
574              For example, to encode the list [c, d, [e | f]]:
575
576              ei_encode_list_header(buf, &i, 3);
577              ei_encode_atom(buf, &i, "c");
578              ei_encode_atom(buf, &i, "d");
579              ei_encode_list_header(buf, &i, 1);
580              ei_encode_atom(buf, &i, "e");
581              ei_encode_atom(buf, &i, "f");
582              ei_encode_empty_list(buf, &i);
583
584          Note:
585              It  may seem that there is no way to create a list without know‐
586              ing the number of elements in advance. But  indeed  there  is  a
587              way.  Notice that the list [a, b, c] can be written as [a | [b |
588              [c]]]. Using this, a list can be written as conses.
589
590
591              To encode a list, without knowing the arity in advance:
592
593              while (something()) {
594                  ei_x_encode_list_header(&x, 1);
595                  ei_x_encode_ulong(&x, i); /* just an example */
596              }
597              ei_x_encode_empty_list(&x);
598
599       int ei_encode_long(char *buf, int *index, long p)
600       int ei_x_encode_long(ei_x_buff* x, long p)
601
602              Types:
603
604                 ei_x_buff
605
606              Encodes a long integer in the binary format. If the code  is  64
607              bits,  the  function  ei_encode_long()  is  the  same  as ei_en‐
608              code_longlong().
609
610       int ei_encode_longlong(char *buf, int *index, long long p)
611       int ei_x_encode_longlong(ei_x_buff* x, long long p)
612
613              Types:
614
615                 ei_x_buff
616
617              Encodes a GCC long long or Visual C++ __int64  (64-bit)  integer
618              in the binary format.
619
620       int ei_encode_map_header(char *buf, int *index, int arity)
621       int ei_x_encode_map_header(ei_x_buff* x, int arity)
622
623              Types:
624
625                 ei_x_buff
626
627              Encodes  a  map header, with a specified arity. The next arity*2
628              terms encoded will be the keys and values of the map encoded  in
629              the following order: K1, V1, K2, V2, ..., Kn, Vn.
630
631              For example, to encode the map #{a => "Apple", b => "Banana"}:
632
633              ei_x_encode_map_header(&x, 2);
634              ei_x_encode_atom(&x, "a");
635              ei_x_encode_string(&x, "Apple");
636              ei_x_encode_atom(&x, "b");
637              ei_x_encode_string(&x, "Banana");
638
639              A correctly encoded map cannot have duplicate keys.
640
641       int ei_encode_pid(char *buf, int *index, const erlang_pid *p)
642       int ei_x_encode_pid(ei_x_buff* x, const erlang_pid *p)
643
644              Types:
645
646                 ei_x_buff
647                 erlang_pid
648
649              Encodes an Erlang process identifier (pid) in the binary format.
650              Parameter p points to an erlang_pid structure which  should  ei‐
651              ther  have been obtained earlier with ei_decode_pid(), ei_self()
652              or created by ei_make_pid().
653
654       int ei_encode_port(char *buf, int *index, const erlang_port *p)
655       int ei_x_encode_port(ei_x_buff* x, const erlang_port *p)
656
657              Types:
658
659                 ei_x_buff
660                 erlang_port
661
662              Encodes an Erlang port in the binary format. Parameter p  points
663              to an erlang_port structure which should have been obtained ear‐
664              lier with ei_decode_port(),
665
666       int ei_encode_ref(char *buf, int *index, const erlang_ref *p)
667       int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)
668
669              Types:
670
671                 ei_x_buff
672                 erlang_ref
673
674              Encodes an Erlang reference in the binary  format.  Parameter  p
675              points  to an erlang_ref structure which either should have been
676              obtained   earlier   with   ei_decode_ref(),   or   created   by
677              ei_make_ref().
678
679       int ei_encode_string(char *buf, int *index, const char *p)
680       int ei_encode_string_len(char *buf, int *index, const char *p, int len)
681       int ei_x_encode_string(ei_x_buff* x, const char *p)
682       int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)
683
684              Types:
685
686                 ei_x_buff
687
688              Encodes  a string in the binary format. (A string in Erlang is a
689              list, but is encoded as a character array in the binary format.)
690              The  string  is  to  be NULL-terminated, except for the ei_x_en‐
691              code_string_len() function.
692
693       int ei_encode_trace(char *buf, int *index, const erlang_trace *p)
694       int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)
695
696              Types:
697
698                 ei_x_buff
699                 erlang_trace
700
701              Encodes an Erlang trace token in the binary format. Parameter  p
702              points  to  a  erlang_trace structure which should have been ob‐
703              tained earlier with ei_decode_trace().
704
705       int ei_encode_tuple_header(char *buf, int *index, int arity)
706       int ei_x_encode_tuple_header(ei_x_buff* x, int arity)
707
708              Types:
709
710                 ei_x_buff
711
712              Encodes a tuple header, with a specified arity. The  next  arity
713              terms  encoded  will  be  the  elements of the tuple. Tuples and
714              lists are encoded recursively, so that a tuple can  contain  an‐
715              other tuple or list.
716
717              For example, to encode the tuple {a, {b, {}}}:
718
719              ei_encode_tuple_header(buf, &i, 2);
720              ei_encode_atom(buf, &i, "a");
721              ei_encode_tuple_header(buf, &i, 2);
722              ei_encode_atom(buf, &i, "b");
723              ei_encode_tuple_header(buf, &i, 0);
724
725       int ei_encode_ulong(char *buf, int *index, unsigned long p)
726       int ei_x_encode_ulong(ei_x_buff* x, unsigned long p)
727
728              Types:
729
730                 ei_x_buff
731
732              Encodes  an  unsigned  long integer in the binary format. If the
733              code is 64 bits, the function ei_encode_ulong() is the  same  as
734              ei_encode_ulonglong().
735
736       int ei_encode_ulonglong(char *buf, int *index, unsigned long long p)
737       int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)
738
739              Types:
740
741                 ei_x_buff
742
743              Encodes  a GCC unsigned long long or Visual C++ unsigned __int64
744              (64-bit) integer in the binary format.
745
746       int ei_encode_version(char *buf, int *index)
747       int ei_x_encode_version(ei_x_buff* x)
748
749              Types:
750
751                 ei_x_buff
752
753              Encodes a version magic number for the binary  format.  Must  be
754              the first token in a binary term.
755
756       int  ei_get_type(const  char  *buf,  const  int  *index, int *type, int
757       *size)
758
759              Returns the type in *type and size in *size of the encoded term.
760              For  strings and atoms, size is the number of characters not in‐
761              cluding the terminating NULL. For binaries and bitstrings, *size
762              is the number of bytes. For lists, tuples and maps, *size is the
763              arity of the object. For bignum integers, *size is the number of
764              bytes  for  the  absolute  value of the bignum. For other types,
765              *size is 0. In all cases, index is left unchanged.
766
767              Currently *type is one of:
768
769                ERL_ATOM_EXT:
770                  Decode using either  ei_decode_atom(),  ei_decode_atom_as(),
771                  or ei_decode_boolean().
772
773                ERL_BINARY_EXT:
774                  Decode   using   either  ei_decode_binary(),  ei_decode_bit‐
775                  string(), or ei_decode_iodata().
776
777                ERL_BIT_BINARY_EXT:
778                  Decode using ei_decode_bitstring().
779
780                ERL_FLOAT_EXT:
781                  Decode using ei_decode_double().
782
783                ERL_NEW_FUN_EXT
784                  ERL_FUN_EXT
785                  ERL_EXPORT_EXT: Decode using ei_decode_fun().
786
787                ERL_SMALL_INTEGER_EXT
788                  ERL_INTEGER_EXT
789                  ERL_SMALL_BIG_EXT
790                  ERL_LARGE_BIG_EXT:  Decode  using  either  ei_decode_char(),
791                  ei_decode_long(),  ei_decode_longlong(),  ei_decode_ulong(),
792                  ei_decode_ulonglong(), or ei_decode_bignum().
793
794                ERL_LIST_EXT
795                  ERL_NIL_EXT: Decode using either ei_decode_list_header(), or
796                  ei_decode_iodata().
797
798                ERL_STRING_EXT:
799                  Decode  using  either  ei_decode_string(),  or ei_decode_io‐
800                  data().
801
802                ERL_MAP_EXT:
803                  Decode using ei_decode_map_header().
804
805                ERL_PID_EXT:
806                  Decode using ei_decode_pid().
807
808                ERL_PORT_EXT:
809                  Decode using ei_decode_port().
810
811                ERL_NEW_REFERENCE_EXT:
812                  Decode using ei_decode_ref().
813
814                ERL_SMALL_TUPLE_EXT
815                  ERL_LARGE_TUPLE_EXT: Decode using ei_decode_tuple_header().
816
817              Instead of decoding a term you can also skipped past it  if  you
818              are not interested in the data by usage of ei_skip_term().
819
820       int ei_init(void)
821
822              Initialize  the  ei library. This function should be called once
823              (and only once) before calling any other functionality in the ei
824              library.
825
826              On  success  zero  is returned. On failure a posix error code is
827              returned.
828
829       int ei_print_term(FILE* fp, const char* buf, int* index)
830       int ei_s_print_term(char** s, const char* buf, int* index)
831
832              Prints a term, in clear text, to the file specified  by  fp,  or
833              the buffer pointed to by s. It tries to resemble the term print‐
834              ing in the Erlang shell.
835
836              In ei_s_print_term(), parameter s is to point to  a  dynamically
837              (malloc) allocated string of BUFSIZ bytes or a NULL pointer. The
838              string can be reallocated (and *s can be updated) by this  func‐
839              tion  if  the  result is more than BUFSIZ characters. The string
840              returned is NULL-terminated.
841
842              The return value is the number of characters written to the file
843              or  string,  or  -1 if buf[index] does not contain a valid term.
844              Unfortunately, I/O errors on fp is not checked.
845
846              Argument index is updated, that is, this function can be  viewed
847              as  a  decode function that decodes a term into a human-readable
848              format.
849
850       void ei_set_compat_rel(unsigned release_number)
851
852              In general, the ei library is guaranteed to be  compatible  with
853              other  Erlang/OTP  components that are 2 major releases older or
854              newer than the ei library itself.
855
856              Sometimes an exception to the above rule has to be made to  make
857              new features (or even bug fixes) possible. A call to ei_set_com‐
858              pat_rel(release_number) sets the  ei  library  in  compatibility
859              mode of OTP release release_number.
860
861              The  only  useful value for release_number is currently 21. This
862              will only be useful and have an effect if bit strings or  export
863              funs  are  received  from  a  connected node. Before OTP 22, bit
864              strings and export funs were not supported by ei. They were  in‐
865              stead  encoded  using an undocumented fallback tuple format when
866              sent from the emulator to ei:
867
868                Bit string:
869                  The term <<42, 1:1>> was encoded as {<<42,  128>>,  1}.  The
870                  first  element  of the tuple is a binary and the second ele‐
871                  ment denotes how many bits of the last bytes are part of the
872                  bit string. In this example only the most significant bit of
873                  the last byte (128) is part of the bit string.
874
875                Export fun:
876                  The term fun lists:map/2 was encoded as {lists,map}. A tuple
877                  with the module, function and a missing arity.
878
879              If ei_set_compat_rel(21) is not called then a connected emulator
880              will send bit strings and export  funs  correctly  encoded.  The
881              functions  ei_decode_bitstring  and ei_decode_fun has to be used
882              to decode such terms. Calling ei_set_compat_rel(21) should  only
883              be  done  as  a  workaround to keep an old implementation alive,
884              which expects to receive the undocumented tuple formats for  bit
885              strings and/or export funs.
886
887          Note:
888              If  this function is called, it can only be called once and must
889              be called before any other  functions  in  the  ei  library  are
890              called.
891
892
893       int ei_skip_term(const char* buf, int* index)
894
895              Skips a term in the specified buffer; recursively skips elements
896              of lists and tuples, so that a full term is skipped. This  is  a
897              way to get the size of an Erlang term.
898
899              buf is the buffer.
900
901              index is updated to point right after the term in the buffer.
902
903          Note:
904              This  can  be useful when you want to hold arbitrary terms: skip
905              them and copy the binary term data to some buffer.
906
907
908              Returns 0 on success, otherwise -1.
909
910       int ei_x_append(ei_x_buff* x, const ei_x_buff* x2)
911       int ei_x_append_buf(ei_x_buff* x, const char* buf, int len)
912
913              Types:
914
915                 ei_x_buff
916
917              Appends data at the end of buffer x.
918
919       int ei_x_format(ei_x_buff* x, const char* fmt, ...)
920       int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )
921
922              Types:
923
924                 ei_x_buff
925                 erlang_pid
926
927              Formats a term, given as a string, to a  buffer.  Works  like  a
928              sprintf for Erlang terms. fmt contains a format string, with ar‐
929              guments like ~d, to insert terms from variables.  The  following
930              formats are supported (with the C types given):
931
932              ~a  An atom, char*
933              ~c  A character, char
934              ~s  A string, char*
935              ~i  An integer, int
936              ~l  A long integer, long int
937              ~u  A unsigned long integer, unsigned long int
938              ~f  A float, float
939              ~d  A double float, double float
940              ~p  An Erlang pid, erlang_pid*
941
942              For example, to encode a tuple with some stuff:
943
944              ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
945              encodes the tuple {numbers,12,3.14159}
946
947              ei_x_format_wo_ver()  formats into a buffer, without the initial
948              version byte.
949
950       int ei_x_free(ei_x_buff* x)
951
952              Types:
953
954                 ei_x_buff
955
956              Deallocates the dynamically allocated content of the buffer  re‐
957              ferred by x. After deallocation, the buff field is set to NULL.
958
959       int ei_x_new(ei_x_buff* x)
960       int ei_x_new_with_version(ei_x_buff* x)
961
962              Types:
963
964                 ei_x_buff
965
966              Initialize  the  dynamically realizable buffer referred to by x.
967              The fields of the structure pointed to by parameter x is  filled
968              in,  and  a default buffer is allocated. ei_x_new_with_version()
969              also puts an initial version byte, which is used in  the  binary
970              format (so that ei_x_encode_version() will not be needed.)
971

DEBUG INFORMATION

973       Some  tips  on what to check when the emulator does not seem to receive
974       the terms that you send:
975
976         * Be careful with the  version  header,  use  ei_x_new_with_version()
977           when appropriate.
978
979         * Turn on distribution tracing on the Erlang node.
980
981         * Check the result codes from ei_decode_-calls.
982
983Ericsson AB                    erl_interface 5.3                         ei(3)
Impressum