1rint(3) Library Functions Manual rint(3)
2
3
4
6 nearbyint, nearbyintf, nearbyintl, rint, rintf, rintl - round to near‐
7 est integer
8
10 Math library (libm, -lm)
11
13 #include <math.h>
14
15 double nearbyint(double x);
16 float nearbyintf(float x);
17 long double nearbyintl(long double x);
18
19 double rint(double x);
20 float rintf(float x);
21 long double rintl(long double x);
22
23 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
24
25 nearbyint(), nearbyintf(), nearbyintl():
26 _POSIX_C_SOURCE >= 200112L || _ISOC99_SOURCE
27
28 rint():
29 _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
30 || _XOPEN_SOURCE >= 500
31 || /* Since glibc 2.19: */ _DEFAULT_SOURCE
32 || /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
33
34 rintf(), rintl():
35 _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
36 || /* Since glibc 2.19: */ _DEFAULT_SOURCE
37 || /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE
38
40 The nearbyint(), nearbyintf(), and nearbyintl() functions round their
41 argument to an integer value in floating-point format, using the cur‐
42 rent rounding direction (see fesetround(3)) and without raising the in‐
43 exact exception. When the current rounding direction is to nearest,
44 these functions round halfway cases to the even integer in accordance
45 with IEEE-754.
46
47 The rint(), rintf(), and rintl() functions do the same, but will raise
48 the inexact exception (FE_INEXACT, checkable via fetestexcept(3)) when
49 the result differs in value from the argument.
50
52 These functions return the rounded integer value.
53
54 If x is integral, +0, -0, NaN, or infinite, x itself is returned.
55
57 No errors occur. POSIX.1-2001 documents a range error for overflows,
58 but see NOTES.
59
61 For an explanation of the terms used in this section, see at‐
62 tributes(7).
63
64 ┌────────────────────────────────────────────┬───────────────┬─────────┐
65 │Interface │ Attribute │ Value │
66 ├────────────────────────────────────────────┼───────────────┼─────────┤
67 │nearbyint(), nearbyintf(), nearbyintl(), │ Thread safety │ MT-Safe │
68 │rint(), rintf(), rintl() │ │ │
69 └────────────────────────────────────────────┴───────────────┴─────────┘
70
72 C11, POSIX.1-2008.
73
75 C99, POSIX.1-2001.
76
78 SUSv2 and POSIX.1-2001 contain text about overflow (which might set er‐
79 rno to ERANGE, or raise an FE_OVERFLOW exception). In practice, the
80 result cannot overflow on any current machine, so this error-handling
81 stuff is just nonsense. (More precisely, overflow can happen only when
82 the maximum value of the exponent is smaller than the number of mantis‐
83 sa bits. For the IEEE-754 standard 32-bit and 64-bit floating-point
84 numbers the maximum value of the exponent is 127 (respectively, 1023),
85 and the number of mantissa bits including the implicit bit is 24 (re‐
86 spectively, 53).)
87
88 If you want to store the rounded value in an integer type, you probably
89 want to use one of the functions described in lrint(3) instead.
90
92 ceil(3), floor(3), lrint(3), round(3), trunc(3)
93
94
95
96Linux man-pages 6.04 2023-03-30 rint(3)