1Math::BigRat(3) User Contributed Perl Documentation Math::BigRat(3)
2
3
4
6 Math::BigRat - arbitrary size rational number math package
7
9 use Math::BigRat;
10
11 my $x = Math::BigRat->new('3/7'); $x += '5/9';
12
13 print $x->bstr(), "\n";
14 print $x ** 2, "\n";
15
16 my $y = Math::BigRat->new('inf');
17 print "$y ", ($y->is_inf ? 'is' : 'is not'), " infinity\n";
18
19 my $z = Math::BigRat->new(144); $z->bsqrt();
20
22 Math::BigRat complements Math::BigInt and Math::BigFloat by providing
23 support for arbitrary big rational numbers.
24
25 MATH LIBRARY
26 You can change the underlying module that does the low-level math
27 operations by using:
28
29 use Math::BigRat try => 'GMP';
30
31 Note: This needs Math::BigInt::GMP installed.
32
33 The following would first try to find Math::BigInt::Foo, then
34 Math::BigInt::Bar, and when this also fails, revert to
35 Math::BigInt::Calc:
36
37 use Math::BigRat try => 'Foo,Math::BigInt::Bar';
38
39 If you want to get warned when the fallback occurs, replace "try" with
40 "lib":
41
42 use Math::BigRat lib => 'Foo,Math::BigInt::Bar';
43
44 If you want the code to die instead, replace "try" with "only":
45
46 use Math::BigRat only => 'Foo,Math::BigInt::Bar';
47
49 Any methods not listed here are derived from Math::BigFloat (or
50 Math::BigInt), so make sure you check these two modules for further
51 information.
52
53 new()
54 $x = Math::BigRat->new('1/3');
55
56 Create a new Math::BigRat object. Input can come in various forms:
57
58 $x = Math::BigRat->new(123); # scalars
59 $x = Math::BigRat->new('inf'); # infinity
60 $x = Math::BigRat->new('123.3'); # float
61 $x = Math::BigRat->new('1/3'); # simple string
62 $x = Math::BigRat->new('1 / 3'); # spaced
63 $x = Math::BigRat->new('1 / 0.1'); # w/ floats
64 $x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
65 $x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
66 $x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
67
68 # You can also give D and N as different objects:
69 $x = Math::BigRat->new(
70 Math::BigInt->new(-123),
71 Math::BigInt->new(7),
72 ); # => -123/7
73
74 numerator()
75 $n = $x->numerator();
76
77 Returns a copy of the numerator (the part above the line) as signed
78 BigInt.
79
80 denominator()
81 $d = $x->denominator();
82
83 Returns a copy of the denominator (the part under the line) as
84 positive BigInt.
85
86 parts()
87 ($n, $d) = $x->parts();
88
89 Return a list consisting of (signed) numerator and (unsigned)
90 denominator as BigInts.
91
92 dparts()
93 Returns the integer part and the fraction part.
94
95 fparts()
96 Returns the smallest possible numerator and denominator so that the
97 numerator divided by the denominator gives back the original value.
98 For finite numbers, both values are integers. Mnemonic: fraction.
99
100 numify()
101 my $y = $x->numify();
102
103 Returns the object as a scalar. This will lose some data if the
104 object cannot be represented by a normal Perl scalar (integer or
105 float), so use "as_int()" or "as_float()" instead.
106
107 This routine is automatically used whenever a scalar is required:
108
109 my $x = Math::BigRat->new('3/1');
110 @array = (0, 1, 2, 3);
111 $y = $array[$x]; # set $y to 3
112
113 as_int()
114 as_number()
115 $x = Math::BigRat->new('13/7');
116 print $x->as_int(), "\n"; # '1'
117
118 Returns a copy of the object as BigInt, truncated to an integer.
119
120 as_number() is an alias for as_int().
121
122 as_float()
123 $x = Math::BigRat->new('13/7');
124 print $x->as_float(), "\n"; # '1'
125
126 $x = Math::BigRat->new('2/3');
127 print $x->as_float(5), "\n"; # '0.66667'
128
129 Returns a copy of the object as BigFloat, preserving the accuracy
130 as wanted, or the default of 40 digits.
131
132 This method was added in v0.22 of Math::BigRat (April 2008).
133
134 as_hex()
135 $x = Math::BigRat->new('13');
136 print $x->as_hex(), "\n"; # '0xd'
137
138 Returns the BigRat as hexadecimal string. Works only for integers.
139
140 as_bin()
141 $x = Math::BigRat->new('13');
142 print $x->as_bin(), "\n"; # '0x1101'
143
144 Returns the BigRat as binary string. Works only for integers.
145
146 as_oct()
147 $x = Math::BigRat->new('13');
148 print $x->as_oct(), "\n"; # '015'
149
150 Returns the BigRat as octal string. Works only for integers.
151
152 from_hex()
153 my $h = Math::BigRat->from_hex('0x10');
154
155 Create a BigRat from a hexadecimal number in string form.
156
157 from_oct()
158 my $o = Math::BigRat->from_oct('020');
159
160 Create a BigRat from an octal number in string form.
161
162 from_bin()
163 my $b = Math::BigRat->from_bin('0b10000000');
164
165 Create a BigRat from an binary number in string form.
166
167 bnan()
168 $x = Math::BigRat->bnan();
169
170 Creates a new BigRat object representing NaN (Not A Number). If
171 used on an object, it will set it to NaN:
172
173 $x->bnan();
174
175 bzero()
176 $x = Math::BigRat->bzero();
177
178 Creates a new BigRat object representing zero. If used on an
179 object, it will set it to zero:
180
181 $x->bzero();
182
183 binf()
184 $x = Math::BigRat->binf($sign);
185
186 Creates a new BigRat object representing infinity. The optional
187 argument is either '-' or '+', indicating whether you want infinity
188 or minus infinity. If used on an object, it will set it to
189 infinity:
190
191 $x->binf();
192 $x->binf('-');
193
194 bone()
195 $x = Math::BigRat->bone($sign);
196
197 Creates a new BigRat object representing one. The optional argument
198 is either '-' or '+', indicating whether you want one or minus one.
199 If used on an object, it will set it to one:
200
201 $x->bone(); # +1
202 $x->bone('-'); # -1
203
204 length()
205 $len = $x->length();
206
207 Return the length of $x in digits for integer values.
208
209 digit()
210 print Math::BigRat->new('123/1')->digit(1); # 1
211 print Math::BigRat->new('123/1')->digit(-1); # 3
212
213 Return the N'ths digit from X when X is an integer value.
214
215 bnorm()
216 $x->bnorm();
217
218 Reduce the number to the shortest form. This routine is called
219 automatically whenever it is needed.
220
221 bfac()
222 $x->bfac();
223
224 Calculates the factorial of $x. For instance:
225
226 print Math::BigRat->new('3/1')->bfac(), "\n"; # 1*2*3
227 print Math::BigRat->new('5/1')->bfac(), "\n"; # 1*2*3*4*5
228
229 Works currently only for integers.
230
231 bround()/round()/bfround()
232 Are not yet implemented.
233
234 bmod()
235 $x->bmod($y);
236
237 Returns $x modulo $y. When $x is finite, and $y is finite and non-
238 zero, the result is identical to the remainder after floored
239 division (F-division). If, in addition, both $x and $y are
240 integers, the result is identical to the result from Perl's %
241 operator.
242
243 bmodinv()
244 $x->bmodinv($mod); # modular multiplicative inverse
245
246 Returns the multiplicative inverse of $x modulo $mod. If
247
248 $y = $x -> copy() -> bmodinv($mod)
249
250 then $y is the number closest to zero, and with the same sign as
251 $mod, satisfying
252
253 ($x * $y) % $mod = 1 % $mod
254
255 If $x and $y are non-zero, they must be relative primes, i.e.,
256 "bgcd($y, $mod)==1". '"NaN"' is returned when no modular
257 multiplicative inverse exists.
258
259 bmodpow()
260 $num->bmodpow($exp,$mod); # modular exponentiation
261 # ($num**$exp % $mod)
262
263 Returns the value of $num taken to the power $exp in the modulus
264 $mod using binary exponentiation. "bmodpow" is far superior to
265 writing
266
267 $num ** $exp % $mod
268
269 because it is much faster - it reduces internal variables into the
270 modulus whenever possible, so it operates on smaller numbers.
271
272 "bmodpow" also supports negative exponents.
273
274 bmodpow($num, -1, $mod)
275
276 is exactly equivalent to
277
278 bmodinv($num, $mod)
279
280 bneg()
281 $x->bneg();
282
283 Used to negate the object in-place.
284
285 is_one()
286 print "$x is 1\n" if $x->is_one();
287
288 Return true if $x is exactly one, otherwise false.
289
290 is_zero()
291 print "$x is 0\n" if $x->is_zero();
292
293 Return true if $x is exactly zero, otherwise false.
294
295 is_pos()/is_positive()
296 print "$x is >= 0\n" if $x->is_positive();
297
298 Return true if $x is positive (greater than or equal to zero),
299 otherwise false. Please note that '+inf' is also positive, while
300 'NaN' and '-inf' aren't.
301
302 is_positive() is an alias for is_pos().
303
304 is_neg()/is_negative()
305 print "$x is < 0\n" if $x->is_negative();
306
307 Return true if $x is negative (smaller than zero), otherwise false.
308 Please note that '-inf' is also negative, while 'NaN' and '+inf'
309 aren't.
310
311 is_negative() is an alias for is_neg().
312
313 is_int()
314 print "$x is an integer\n" if $x->is_int();
315
316 Return true if $x has a denominator of 1 (e.g. no fraction parts),
317 otherwise false. Please note that '-inf', 'inf' and 'NaN' aren't
318 integer.
319
320 is_odd()
321 print "$x is odd\n" if $x->is_odd();
322
323 Return true if $x is odd, otherwise false.
324
325 is_even()
326 print "$x is even\n" if $x->is_even();
327
328 Return true if $x is even, otherwise false.
329
330 bceil()
331 $x->bceil();
332
333 Set $x to the next bigger integer value (e.g. truncate the number
334 to integer and then increment it by one).
335
336 bfloor()
337 $x->bfloor();
338
339 Truncate $x to an integer value.
340
341 bint()
342 $x->bint();
343
344 Round $x towards zero.
345
346 bsqrt()
347 $x->bsqrt();
348
349 Calculate the square root of $x.
350
351 broot()
352 $x->broot($n);
353
354 Calculate the N'th root of $x.
355
356 badd()
357 $x->badd($y);
358
359 Adds $y to $x and returns the result.
360
361 bmul()
362 $x->bmul($y);
363
364 Multiplies $y to $x and returns the result.
365
366 bsub()
367 $x->bsub($y);
368
369 Subtracts $y from $x and returns the result.
370
371 bdiv()
372 $q = $x->bdiv($y);
373 ($q, $r) = $x->bdiv($y);
374
375 In scalar context, divides $x by $y and returns the result. In list
376 context, does floored division (F-division), returning an integer
377 $q and a remainder $r so that $x = $q * $y + $r. The remainer
378 (modulo) is equal to what is returned by "$x->bmod($y)".
379
380 binv()
381 $x->binv();
382
383 Inverse of $x.
384
385 bdec()
386 $x->bdec();
387
388 Decrements $x by 1 and returns the result.
389
390 binc()
391 $x->binc();
392
393 Increments $x by 1 and returns the result.
394
395 copy()
396 my $z = $x->copy();
397
398 Makes a deep copy of the object.
399
400 Please see the documentation in Math::BigInt for further details.
401
402 bstr()/bsstr()
403 my $x = Math::BigRat->new('8/4');
404 print $x->bstr(), "\n"; # prints 1/2
405 print $x->bsstr(), "\n"; # prints 1/2
406
407 Return a string representing this object.
408
409 bcmp()
410 $x->bcmp($y);
411
412 Compares $x with $y and takes the sign into account. Returns -1,
413 0, 1 or undef.
414
415 bacmp()
416 $x->bacmp($y);
417
418 Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or
419 undef.
420
421 beq()
422 $x -> beq($y);
423
424 Returns true if and only if $x is equal to $y, and false otherwise.
425
426 bne()
427 $x -> bne($y);
428
429 Returns true if and only if $x is not equal to $y, and false
430 otherwise.
431
432 blt()
433 $x -> blt($y);
434
435 Returns true if and only if $x is equal to $y, and false otherwise.
436
437 ble()
438 $x -> ble($y);
439
440 Returns true if and only if $x is less than or equal to $y, and
441 false otherwise.
442
443 bgt()
444 $x -> bgt($y);
445
446 Returns true if and only if $x is greater than $y, and false
447 otherwise.
448
449 bge()
450 $x -> bge($y);
451
452 Returns true if and only if $x is greater than or equal to $y, and
453 false otherwise.
454
455 blsft()/brsft()
456 Used to shift numbers left/right.
457
458 Please see the documentation in Math::BigInt for further details.
459
460 band()
461 $x->band($y); # bitwise and
462
463 bior()
464 $x->bior($y); # bitwise inclusive or
465
466 bxor()
467 $x->bxor($y); # bitwise exclusive or
468
469 bnot()
470 $x->bnot(); # bitwise not (two's complement)
471
472 bpow()
473 $x->bpow($y);
474
475 Compute $x ** $y.
476
477 Please see the documentation in Math::BigInt for further details.
478
479 blog()
480 $x->blog($base, $accuracy); # logarithm of x to the base $base
481
482 If $base is not defined, Euler's number (e) is used:
483
484 print $x->blog(undef, 100); # log(x) to 100 digits
485
486 bexp()
487 $x->bexp($accuracy); # calculate e ** X
488
489 Calculates two integers A and B so that A/B is equal to "e ** $x",
490 where "e" is Euler's number.
491
492 This method was added in v0.20 of Math::BigRat (May 2007).
493
494 See also blog().
495
496 bnok()
497 $x->bnok($y); # x over y (binomial coefficient n over k)
498
499 Calculates the binomial coefficient n over k, also called the
500 "choose" function. The result is equivalent to:
501
502 ( n ) n!
503 | - | = -------
504 ( k ) k!(n-k)!
505
506 This method was added in v0.20 of Math::BigRat (May 2007).
507
508 config()
509 Math::BigRat->config("trap_nan" => 1); # set
510 $accu = Math::BigRat->config("accuracy"); # get
511
512 Set or get configuration parameter values. Read-only parameters are
513 marked as RO. Read-write parameters are marked as RW. The following
514 parameters are supported.
515
516 Parameter RO/RW Description
517 Example
518 ============================================================
519 lib RO Name of the math backend library
520 Math::BigInt::Calc
521 lib_version RO Version of the math backend library
522 0.30
523 class RO The class of config you just called
524 Math::BigRat
525 version RO version number of the class you used
526 0.10
527 upgrade RW To which class numbers are upgraded
528 undef
529 downgrade RW To which class numbers are downgraded
530 undef
531 precision RW Global precision
532 undef
533 accuracy RW Global accuracy
534 undef
535 round_mode RW Global round mode
536 even
537 div_scale RW Fallback accuracy for div, sqrt etc.
538 40
539 trap_nan RW Trap NaNs
540 undef
541 trap_inf RW Trap +inf/-inf
542 undef
543
545 After "use Math::BigRat ':constant'" all numeric literals in the given
546 scope are converted to "Math::BigRat" objects. This conversion happens
547 at compile time. Every non-integer is convert to a NaN.
548
549 For example,
550
551 perl -MMath::BigRat=:constant -le 'print 2**150'
552
553 prints the exact value of "2**150". Note that without conversion of
554 constants to objects the expression "2**150" is calculated using Perl
555 scalars, which leads to an inaccurate result.
556
557 Please note that strings are not affected, so that
558
559 use Math::BigRat qw/:constant/;
560
561 $x = "1234567890123456789012345678901234567890"
562 + "123456789123456789";
563
564 does give you what you expect. You need an explicit Math::BigRat->new()
565 around at least one of the operands. You should also quote large
566 constants to prevent loss of precision:
567
568 use Math::BigRat;
569
570 $x = Math::BigRat->new("1234567889123456789123456789123456789");
571
572 Without the quotes Perl first converts the large number to a floating
573 point constant at compile time, and then converts the result to a
574 Math::BigRat object at run time, which results in an inaccurate result.
575
576 Hexadecimal, octal, and binary floating point literals
577 Perl (and this module) accepts hexadecimal, octal, and binary floating
578 point literals, but use them with care with Perl versions before
579 v5.32.0, because some versions of Perl silently give the wrong result.
580 Below are some examples of different ways to write the number decimal
581 314.
582
583 Hexadecimal floating point literals:
584
585 0x1.3ap+8 0X1.3AP+8
586 0x1.3ap8 0X1.3AP8
587 0x13a0p-4 0X13A0P-4
588
589 Octal floating point literals (with "0" prefix):
590
591 01.164p+8 01.164P+8
592 01.164p8 01.164P8
593 011640p-4 011640P-4
594
595 Octal floating point literals (with "0o" prefix) (requires v5.34.0):
596
597 0o1.164p+8 0O1.164P+8
598 0o1.164p8 0O1.164P8
599 0o11640p-4 0O11640P-4
600
601 Binary floating point literals:
602
603 0b1.0011101p+8 0B1.0011101P+8
604 0b1.0011101p8 0B1.0011101P8
605 0b10011101000p-2 0B10011101000P-2
606
608 Please report any bugs or feature requests to "bug-math-bigrat at
609 rt.cpan.org", or through the web interface at
610 <https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigRat> (requires
611 login). We will be notified, and then you'll automatically be notified
612 of progress on your bug as I make changes.
613
615 You can find documentation for this module with the perldoc command.
616
617 perldoc Math::BigRat
618
619 You can also look for information at:
620
621 • GitHub
622
623 <https://github.com/pjacklam/p5-Math-BigRat>
624
625 • RT: CPAN's request tracker
626
627 <https://rt.cpan.org/Dist/Display.html?Name=Math-BigRat>
628
629 • MetaCPAN
630
631 <https://metacpan.org/release/Math-BigRat>
632
633 • CPAN Testers Matrix
634
635 <http://matrix.cpantesters.org/?dist=Math-BigRat>
636
637 • CPAN Ratings
638
639 <https://cpanratings.perl.org/dist/Math-BigRat>
640
642 This program is free software; you may redistribute it and/or modify it
643 under the same terms as Perl itself.
644
646 bigrat, Math::BigFloat and Math::BigInt as well as the backends
647 Math::BigInt::FastCalc, Math::BigInt::GMP, and Math::BigInt::Pari.
648
650 • Tels <http://bloodgate.com/> 2001-2009.
651
652 • Maintained by Peter John Acklam <pjacklam@gmail.com> 2011-
653
654
655
656perl v5.36.0 2023-01-20 Math::BigRat(3)