1math::complexnumbers(n) Tcl Math Library math::complexnumbers(n)
2
3
4
5______________________________________________________________________________
6
8 math::complexnumbers - Straightforward complex number package
9
11 package require Tcl 8.3
12
13 package require math::complexnumbers ?1.0.2?
14
15 ::math::complexnumbers::+ z1 z2
16
17 ::math::complexnumbers::- z1 z2
18
19 ::math::complexnumbers::* z1 z2
20
21 ::math::complexnumbers::/ z1 z2
22
23 ::math::complexnumbers::conj z1
24
25 ::math::complexnumbers::real z1
26
27 ::math::complexnumbers::imag z1
28
29 ::math::complexnumbers::mod z1
30
31 ::math::complexnumbers::arg z1
32
33 ::math::complexnumbers::complex real imag
34
35 ::math::complexnumbers::tostring z1
36
37 ::math::complexnumbers::exp z1
38
39 ::math::complexnumbers::sin z1
40
41 ::math::complexnumbers::cos z1
42
43 ::math::complexnumbers::tan z1
44
45 ::math::complexnumbers::log z1
46
47 ::math::complexnumbers::sqrt z1
48
49 ::math::complexnumbers::pow z1 z2
50
51______________________________________________________________________________
52
54 The mathematical module complexnumbers provides a straightforward im‐
55 plementation of complex numbers in pure Tcl. The philosophy is that the
56 user knows he or she is dealing with complex numbers in an abstract way
57 and wants as high a performance as can be had within the limitations of
58 an interpreted language.
59
60 Therefore the procedures defined in this package assume that the argu‐
61 ments are valid (representations of) "complex numbers", that is, lists
62 of two numbers defining the real and imaginary part of a complex number
63 (though this is a mere detail: rely on the complex command to construct
64 a valid number.)
65
66 Most procedures implement the basic arithmetic operations or elementary
67 functions whereas several others convert to and from different repre‐
68 sentations:
69
70 set z [complex 0 1]
71 puts "z = [tostring $z]"
72 puts "z**2 = [* $z $z]
73
74 would result in:
75
76
77 z = i
78 z**2 = -1
79
80
82 The package implements all or most basic operations and elementary
83 functions.
84
85 The arithmetic operations are:
86
87 ::math::complexnumbers::+ z1 z2
88 Add the two arguments and return the resulting complex number
89
90 complex z1 (in)
91 First argument in the summation
92
93 complex z2 (in)
94 Second argument in the summation
95
96
97 ::math::complexnumbers::- z1 z2
98 Subtract the second argument from the first and return the re‐
99 sulting complex number. If there is only one argument, the oppo‐
100 site of z1 is returned (i.e. -z1)
101
102 complex z1 (in)
103 First argument in the subtraction
104
105 complex z2 (in)
106 Second argument in the subtraction (optional)
107
108
109 ::math::complexnumbers::* z1 z2
110 Multiply the two arguments and return the resulting complex num‐
111 ber
112
113 complex z1 (in)
114 First argument in the multiplication
115
116 complex z2 (in)
117 Second argument in the multiplication
118
119
120 ::math::complexnumbers::/ z1 z2
121 Divide the first argument by the second and return the resulting
122 complex number
123
124 complex z1 (in)
125 First argument (numerator) in the division
126
127 complex z2 (in)
128 Second argument (denominator) in the division
129
130
131 ::math::complexnumbers::conj z1
132 Return the conjugate of the given complex number
133
134 complex z1 (in)
135 Complex number in question
136
137
138 Conversion/inquiry procedures:
139
140 ::math::complexnumbers::real z1
141 Return the real part of the given complex number
142
143 complex z1 (in)
144 Complex number in question
145
146
147 ::math::complexnumbers::imag z1
148 Return the imaginary part of the given complex number
149
150 complex z1 (in)
151 Complex number in question
152
153
154 ::math::complexnumbers::mod z1
155 Return the modulus of the given complex number
156
157 complex z1 (in)
158 Complex number in question
159
160
161 ::math::complexnumbers::arg z1
162 Return the argument ("angle" in radians) of the given complex
163 number
164
165 complex z1 (in)
166 Complex number in question
167
168
169 ::math::complexnumbers::complex real imag
170 Construct the complex number "real + imag*i" and return it
171
172 float real (in)
173 The real part of the new complex number
174
175 float imag (in)
176 The imaginary part of the new complex number
177
178
179 ::math::complexnumbers::tostring z1
180 Convert the complex number to the form "real + imag*i" and re‐
181 turn the string
182
183 float complex (in)
184 The complex number to be converted
185
186
187 Elementary functions:
188
189 ::math::complexnumbers::exp z1
190 Calculate the exponential for the given complex argument and re‐
191 turn the result
192
193 complex z1 (in)
194 The complex argument for the function
195
196
197 ::math::complexnumbers::sin z1
198 Calculate the sine function for the given complex argument and
199 return the result
200
201 complex z1 (in)
202 The complex argument for the function
203
204
205 ::math::complexnumbers::cos z1
206 Calculate the cosine function for the given complex argument and
207 return the result
208
209 complex z1 (in)
210 The complex argument for the function
211
212
213 ::math::complexnumbers::tan z1
214 Calculate the tangent function for the given complex argument
215 and return the result
216
217 complex z1 (in)
218 The complex argument for the function
219
220
221 ::math::complexnumbers::log z1
222 Calculate the (principle value of the) logarithm for the given
223 complex argument and return the result
224
225 complex z1 (in)
226 The complex argument for the function
227
228
229 ::math::complexnumbers::sqrt z1
230 Calculate the (principle value of the) square root for the given
231 complex argument and return the result
232
233 complex z1 (in)
234 The complex argument for the function
235
236
237 ::math::complexnumbers::pow z1 z2
238 Calculate "z1 to the power of z2" and return the result
239
240 complex z1 (in)
241 The complex number to be raised to a power
242
243 complex z2 (in)
244 The complex power to be used
245
247 This document, and the package it describes, will undoubtedly contain
248 bugs and other problems. Please report such in the category math ::
249 complexnumbers of the Tcllib Trackers [http://core.tcl.tk/tcllib/re‐
250 portlist]. Please also report any ideas for enhancements you may have
251 for either package and/or documentation.
252
253 When proposing code changes, please provide unified diffs, i.e the out‐
254 put of diff -u.
255
256 Note further that attachments are strongly preferred over inlined
257 patches. Attachments can be made by going to the Edit form of the
258 ticket immediately after its creation, and then using the left-most
259 button in the secondary navigation bar.
260
262 complex numbers, math
263
265 Mathematics
266
268 Copyright (c) 2004 Arjen Markus <arjenmarkus@users.sourceforge.net>
269
270
271
272
273tcllib 1.0.2 math::complexnumbers(n)