1Math::PlanePath::CompleUxsPelrusC(o3n)tributed Perl DocuMmaetnht:a:tPiloannePath::ComplexPlus(3)
2
3
4

NAME

6       Math::PlanePath::ComplexPlus -- points in complex base i+r
7

SYNOPSIS

9        use Math::PlanePath::ComplexPlus;
10        my $path = Math::PlanePath::ComplexPlus->new;
11        my ($x, $y) = $path->n_to_xy (123);
12

DESCRIPTION

14       This path traverses points by a complex number base i+r for integer
15       r>=1.  The default is base i+1
16
17                                30  31          14  15                 5
18                            28  29          12  13                     4
19                                26  27  22  23  10  11   6   7         3
20                            24  25  20  21   8   9   4   5             2
21                62  63          46  47  18  19           2   3         1
22            60  61          44  45  16  17           0   1         <- Y=0
23                58  59  54  55  42  43  38  39                        -1
24            56  57  52  53  40  41  36  37                            -2
25                        50  51  94  95  34  35  78  79                -3
26                    48  49  92  93  32  33  76  77                    -4
27                                90  91  86  87  74  75  70  71        -5
28                            88  89  84  85  72  73  68  69            -6
29               126 127         110 111  82  83          66  67        -7
30           124 125         108 109  80  81          64  65            -8
31               122 123 118 119 106 107 102 103                        -9
32           120 121 116 117 104 105 100 101                           -10
33                       114 115          98  99                       -11
34                   112 113          96  97                           -12
35
36             ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^   ^
37           -10  -9  -8  -7  -6  -5  -4  -3  -2  -1  X=0  1   2
38
39       The shape of these points N=0 to N=2^k-1 inclusive is equivalent to the
40       twindragon turned 135 degrees.  Each complex base point corresponds to
41       a unit square inside the twindragon curve (two DragonCurve back-to-
42       back).
43
44   Real Part
45       Option "realpart => $r" selects another r for complex base b=i+r.  For
46       example
47
48           realpart => 2
49                                            45 46 47 48 49      8
50                                      40 41 42 43 44            7
51                                35 36 37 38 39                  6
52                          30 31 32 33 34                        5
53                    25 26 27 28 29 20 21 22 23 24               4
54                             15 16 17 18 19                     3
55                       10 11 12 13 14                           2
56                  5  6  7  8  9                                 1
57            0  1  2  3  4                                   <- Y=0
58
59            ^
60           X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
61
62       N is broken into digits of a base norm=r*r+1, ie. digits 0 to r*r
63       inclusive.
64
65           norm = r*r + 1
66           Nstart = 0
67           Nlevel = norm^level - 1
68
69       The low digit of N makes horizontal runs of r*r+1 many points, such as
70       N=0 to N=4, then N=5 to N=9, etc shown above.  In the default r=1 these
71       runs are 2 long.  For r=2 shown above they're 2*2+1=5 long, or r=3
72       would be 3*3+1=10, etc.
73
74       The offset for each successive run is i+r, ie. Y=1,X=r such as at N=5
75       shown above.  Then the offset for the next level is (i+r)^2 = (2r*i +
76       r^2-1) so N=25 begins at Y=2*r=4, X=r*r-1=3.  In general each level
77       adds an angle
78
79           angle = atan(1/r)
80           Nlevel_angle = level * angle
81
82       So the points spiral around anti-clockwise.  For r=1 the angle is
83       atan(1/1)=45 degrees, so that for example level=4 is angle 4*45=180
84       degrees, putting N=2^4=16 on the negative X axis as shown in the first
85       sample above.
86
87       As r becomes bigger the angle becomes smaller, making it spiral more
88       slowly.  The points never fill the plane, but the set of points N=0 to
89       Nlevel are all touching.
90
91   Arms
92       For "realpart => 1", an optional "arms => 2" adds a second copy of the
93       curve rotated 180 degrees and starting from X=0,Y=1.  It meshes
94       perfectly to fill the plane.  Each arm advances successively so
95       N=0,2,4,etc is the plain path and N=1,3,5,7,etc is the copy
96
97           arms=>2
98
99               60  62          28  30                                 5
100           56  58          24  26                                     4
101               52  54  44  46  20  22  12  14                         3
102           48  50  40  42  16  18   8  10                             2
103                       36  38   3   1   4   6  35  33                 1
104                   32  34   7   5   0   2  39  37                 <- Y=0
105                               11   9  19  17  43  41  51  49        -1
106                           15  13  23  21  47  45  55  53            -2
107                                       27  25          59  57        -3
108                                   31  29          63  61            -4
109
110                                    ^
111           -6  -5  -4  -3  -2  -1  X=0  1   2   3   4   5   6
112
113       There's no "arms" parameter for other "realpart" values as yet, only
114       for i+1.  Is there a good rotated arrangement for others?  Do "norm"
115       many copies fill the plane in general?
116

FUNCTIONS

118       See "FUNCTIONS" in Math::PlanePath for behaviour common to all path
119       classes.
120
121       "$path = Math::PlanePath::ComplexPlus->new ()"
122           Create and return a new path object.
123
124       "($x,$y) = $path->n_to_xy ($n)"
125           Return the X,Y coordinates of point number $n on the path.  Points
126           begin at 0 and if "$n < 0" then the return is an empty list.
127
128   Level Methods
129       "($n_lo, $n_hi) = $path->level_to_n_range($level)"
130           Return "(0, 2**$level - 1)", or for 2 arms return "(0, 2 *
131           2**$level - 1)".  With the "realpart" option return "(0,
132           $norm**$level - 1)" where norm=realpart^2+1.
133

FORMULAS

135       Various formulas and pictures etc for the i+1 case can be found in the
136       author's long mathematical write-up (section "Complex Base i+1")
137
138           <http://user42.tuxfamily.org/dragon/index.html>
139

OEIS

141       Entries in Sloane's Online Encyclopedia of Integer Sequences related to
142       this path include
143
144           <http://oeis.org/A290885> (etc)
145
146           realpart=1 (i+1, the default)
147             A290885    -X
148             A290884    Y
149             A290886    norm X^2 + Y^2
150             A146559    dX at N=2^k-1 (step to next replication level)
151             A077950,A077870
152                      location of ComplexMinus origin in ComplexPlus
153                      (mirror horizontal even level, vertical odd level)
154

SEE ALSO

156       Math::PlanePath, Math::PlanePath::ComplexMinus,
157       Math::PlanePath::ComplexRevolving, Math::PlanePath::DragonCurve
158
159           <http://user42.tuxfamily.org/dragon/index.html>
160

HOME PAGE

162       <http://user42.tuxfamily.org/math-planepath/index.html>
163

LICENSE

165       Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020
166       Kevin Ryde
167
168       This file is part of Math-PlanePath.
169
170       Math-PlanePath is free software; you can redistribute it and/or modify
171       it under the terms of the GNU General Public License as published by
172       the Free Software Foundation; either version 3, or (at your option) any
173       later version.
174
175       Math-PlanePath is distributed in the hope that it will be useful, but
176       WITHOUT ANY WARRANTY; without even the implied warranty of
177       MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
178       General Public License for more details.
179
180       You should have received a copy of the GNU General Public License along
181       with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.
182
183
184
185perl v5.36.0                      2023-01-20   Math::PlanePath::ComplexPlus(3)
Impressum