1i.topo.corr(1)              GRASS GIS User's Manual             i.topo.corr(1)
2
3
4

NAME

6       i.topo.corr  - Computes topographic correction of reflectance.
7

KEYWORDS

9       imagery, terrain, topographic correction
10

SYNOPSIS

12       i.topo.corr
13       i.topo.corr --help
14       i.topo.corr  [-is]   [input=name[,name,...]]   output=name basemap=name
15       zenith=float    [azimuth=float]      [method=string]      [--overwrite]
16       [--help]  [--verbose]  [--quiet]  [--ui]
17
18   Flags:
19       -i
20           Output sun illumination terrain model
21
22       -s
23           Scale output to input and copy color rules
24
25       --overwrite
26           Allow output files to overwrite existing files
27
28       --help
29           Print usage summary
30
31       --verbose
32           Verbose module output
33
34       --quiet
35           Quiet module output
36
37       --ui
38           Force launching GUI dialog
39
40   Parameters:
41       input=name[,name,...]
42           Name of reflectance raster maps to be corrected topographically
43
44       output=name [required]
45           Name (flag -i) or prefix for output raster maps
46
47       basemap=name [required]
48           Name of input base raster map (elevation or illumination)
49
50       zenith=float [required]
51           Solar zenith in degrees
52
53       azimuth=float
54           Solar azimuth in degrees (only if flag -i)
55
56       method=string
57           Topographic correction method
58           Options: cosine, minnaert, c-factor, percent
59           Default: c-factor
60

DESCRIPTION

62       i.topo.corr is used to topographically correct reflectance from imagery
63       files, e.g. obtained with i.landsat.toar, using a sun illumination ter‐
64       rain  model. This illumination model represents the cosine of the inci‐
65       dent angle i, i.e. the angle between the normal to the ground  and  the
66       sun rays.
67
68       Note:  If  needed,  the sun position can be calculated for a given date
69       and time with r.sunmask.
70       Figure showing terrain and solar angles
71
72       Using the -i flag and given an elevation basemap (metric),  i.topo.corr
73       creates a simple illumination model using the formula:
74
75           •   cos_i = cos(s) * cos(z) + sin(s) * sin(z) * cos(a - o)
76       where,
77
78i is the incident angle to be calculated,
79
80s is the terrain slope angle (from r.slope.aspect),
81
82z  is  the solar zenith angle (i.e., 90° - solar horizon angle
83               from r.sunmask),
84
85a the solar azimuth angle (from r.sunmask),
86
87o the terrain aspect angle (from r.slope.aspect).
88
89       For each band file, the corrected reflectance (ref_c) is calculate from
90       the  original reflectance (ref_o) using one of the four offered methods
91       (one lambertian and two non-lambertian).
92
93   Method: cosine
94           •   ref_c = ref_o * cos_z / cos_i
95
96   Method: minnaert
97           •   ref_c = ref_o * (cos_z / cos_i) ^k
98       where, k is obtained by linear regression of
99       ln(ref_o) = ln(ref_c) - k ln(cos_i/cos_z)
100
101   Method: c-factor
102           •   ref_c = ref_o * (cos_z + c)/ (cos_i + c)
103       where, c is a/m from ref_o = a + m * cos_i
104
105   Method: percent
106       We can use cos_i to estimate the percent of solar incidence on the sur‐
107       face,  then  the transformation (cos_i + 1)/2 varied from 0 (surface in
108       the side in opposition to the sun: infinite correction)  to  1  (direct
109       exhibition to the sun: no correction) and the corrected reflectance can
110       be calculated as
111
112           •   ref_c = ref_o * 2 / (cos_i + 1)
113

NOTES

115       1      The illumination model (cos_i) with flag -i uses the actual  re‐
116              gion as limits and the resolution of the elevation map.
117
118       2      The  topographic  correction use the full reflectance file (null
119              remain null) and its resolution.
120
121       3      The elevation map to calculate the illumination model should  be
122              metric.
123

EXAMPLES

125       First,  make  a illumination model from the elevation map (here, SRTM).
126       Then make perform the topographic correction of e.g. the bands  toar.5,
127       toar.4   and  toar.3  with  output  as  tcor.toar.5,  tcor.toar.4,  and
128       tcor.toar.3 using c-factor (= c-correction) method:
129
130       # first pass: create illumination model
131       i.topo.corr -i base=SRTM zenith=33.3631 azimuth=59.8897 output=SRTM.illumination
132       # second pass: apply illumination model
133       i.topo.corr base=SRTM.illumination input=toar.5,toar.4,toar.3 output=tcor \
134         zenith=33.3631 method=c-factor
135

REFERENCES

137           •   Law K.H. and Nichol J, 2004. Topographic Correction For Differ‐
138               ential Illumination Effects On Ikonos Satellite Imagery. Inter‐
139               national Archives of Photogrammetry Remote Sensing and  Spatial
140               Information, pp. 641-646.
141
142           •   Meyer,  P.  and Itten, K.I. and Kellenberger, KJ and Sandmeier,
143               S. and Sandmeier, R., 1993. Radiometric  corrections  of  topo‐
144               graphically  induced  effects on Landsat TM data in alpine ter‐
145               rain. Photogrammetric Engineering and Remote Sensing 48(17).
146
147           •   Riaño, D. and Chuvieco, E. and Salas, J. and Aguado, I., 2003.
148               Assessment  of  Different Topographic Corrections in Landsat-TM
149               Data for Mapping Vegetation Types. IEEE  Transactions  On  Geo‐
150               science And Remote Sensing, Vol. 41, No. 5
151
152           •   Twele  A. and Erasmi S, 2005. Evaluating topographic correction
153               algorithms for improved land cover discrimination in  mountain‐
154               ous areas of Central Sulawesi. Göttinger Geographische Abhand‐
155               lungen, vol. 113.
156

SEE ALSO

158        i.landsat.toar, r.mapcalc, r.sun r.sunmask
159

AUTHOR

161       E. Jorge Tizado  (ej.tizado unileon es)
162       Dept. Biodiversity and Environmental Management, University  of  León,
163       Spain
164
165       Figure derived from Neteler & Mitasova, 2008.
166

SOURCE CODE

168       Available at: i.topo.corr source code (history)
169
170       Accessed: Saturday Oct 28 18:19:11 2023
171
172       Main  index | Imagery index | Topics index | Keywords index | Graphical
173       index | Full index
174
175       © 2003-2023 GRASS Development Team, GRASS GIS 8.3.1 Reference Manual
176
177
178
179GRASS 8.3.1                                                     i.topo.corr(1)
Impressum