1EVP_PKEY_CTX_CTRL(3ossl) OpenSSL EVP_PKEY_CTX_CTRL(3ossl)
2
3
4
6 EVP_PKEY_CTX_ctrl, EVP_PKEY_CTX_ctrl_str, EVP_PKEY_CTX_ctrl_uint64,
7 EVP_PKEY_CTX_md, EVP_PKEY_CTX_set_signature_md,
8 EVP_PKEY_CTX_get_signature_md, EVP_PKEY_CTX_set_mac_key,
9 EVP_PKEY_CTX_set_group_name, EVP_PKEY_CTX_get_group_name,
10 EVP_PKEY_CTX_set_rsa_padding, EVP_PKEY_CTX_get_rsa_padding,
11 EVP_PKEY_CTX_set_rsa_pss_saltlen, EVP_PKEY_CTX_get_rsa_pss_saltlen,
12 EVP_PKEY_CTX_set_rsa_keygen_bits, EVP_PKEY_CTX_set_rsa_keygen_pubexp,
13 EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
14 EVP_PKEY_CTX_set_rsa_keygen_primes, EVP_PKEY_CTX_set_rsa_mgf1_md_name,
15 EVP_PKEY_CTX_set_rsa_mgf1_md, EVP_PKEY_CTX_get_rsa_mgf1_md,
16 EVP_PKEY_CTX_get_rsa_mgf1_md_name, EVP_PKEY_CTX_set_rsa_oaep_md_name,
17 EVP_PKEY_CTX_set_rsa_oaep_md, EVP_PKEY_CTX_get_rsa_oaep_md,
18 EVP_PKEY_CTX_get_rsa_oaep_md_name, EVP_PKEY_CTX_set0_rsa_oaep_label,
19 EVP_PKEY_CTX_get0_rsa_oaep_label, EVP_PKEY_CTX_set_dsa_paramgen_bits,
20 EVP_PKEY_CTX_set_dsa_paramgen_q_bits, EVP_PKEY_CTX_set_dsa_paramgen_md,
21 EVP_PKEY_CTX_set_dsa_paramgen_md_props,
22 EVP_PKEY_CTX_set_dsa_paramgen_gindex,
23 EVP_PKEY_CTX_set_dsa_paramgen_type, EVP_PKEY_CTX_set_dsa_paramgen_seed,
24 EVP_PKEY_CTX_set_dh_paramgen_prime_len,
25 EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
26 EVP_PKEY_CTX_set_dh_paramgen_generator,
27 EVP_PKEY_CTX_set_dh_paramgen_type, EVP_PKEY_CTX_set_dh_paramgen_gindex,
28 EVP_PKEY_CTX_set_dh_paramgen_seed, EVP_PKEY_CTX_set_dh_rfc5114,
29 EVP_PKEY_CTX_set_dhx_rfc5114, EVP_PKEY_CTX_set_dh_pad,
30 EVP_PKEY_CTX_set_dh_nid, EVP_PKEY_CTX_set_dh_kdf_type,
31 EVP_PKEY_CTX_get_dh_kdf_type, EVP_PKEY_CTX_set0_dh_kdf_oid,
32 EVP_PKEY_CTX_get0_dh_kdf_oid, EVP_PKEY_CTX_set_dh_kdf_md,
33 EVP_PKEY_CTX_get_dh_kdf_md, EVP_PKEY_CTX_set_dh_kdf_outlen,
34 EVP_PKEY_CTX_get_dh_kdf_outlen, EVP_PKEY_CTX_set0_dh_kdf_ukm,
35 EVP_PKEY_CTX_get0_dh_kdf_ukm, EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
36 EVP_PKEY_CTX_set_ec_param_enc, EVP_PKEY_CTX_set_ecdh_cofactor_mode,
37 EVP_PKEY_CTX_get_ecdh_cofactor_mode, EVP_PKEY_CTX_set_ecdh_kdf_type,
38 EVP_PKEY_CTX_get_ecdh_kdf_type, EVP_PKEY_CTX_set_ecdh_kdf_md,
39 EVP_PKEY_CTX_get_ecdh_kdf_md, EVP_PKEY_CTX_set_ecdh_kdf_outlen,
40 EVP_PKEY_CTX_get_ecdh_kdf_outlen, EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
41 EVP_PKEY_CTX_get0_ecdh_kdf_ukm, EVP_PKEY_CTX_set1_id,
42 EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len, EVP_PKEY_CTX_set_kem_op
43 - algorithm specific control operations
44
46 #include <openssl/evp.h>
47
48 int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
49 int cmd, int p1, void *p2);
50 int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
51 int cmd, uint64_t value);
52 int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
53 const char *value);
54
55 int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
56
57 int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
58 int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
59
60 int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
61 int len);
62 int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
63 int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
64
65 int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);
66
67 #include <openssl/rsa.h>
68
69 int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
70 int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
71 int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
72 int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
73 int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
74 int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
75 int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
76 int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
77 const char *mdprops);
78 int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
79 int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
80 int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
81 size_t namelen);
82 int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
83 const char *mdprops);
84 int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
85 int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
86 int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
87 size_t namelen);
88 int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
89 int len);
90 int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
91
92 #include <openssl/dsa.h>
93
94 int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
95 int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
96 int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
97 int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
98 const char *md_name,
99 const char *md_properties);
100 int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
101 int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
102 int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
103 const unsigned char *seed,
104 size_t seedlen);
105
106 #include <openssl/dh.h>
107
108 int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
109 int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
110 int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
111 int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
112 int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
113 int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
114 int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
115 int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
116 int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
117 int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
118 const unsigned char *seed,
119 size_t seedlen);
120 int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
121 int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
122 int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
123 int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
124 int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
125 int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
126 int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
127 int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
128 int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
129
130 #include <openssl/ec.h>
131
132 int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
133 int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
134 int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
135 int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
136 int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
137 int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
138 int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
139 int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
140 int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
141 int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
142 int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
143
144 int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
145 int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
146 int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
147
148 The following functions have been deprecated since OpenSSL 3.0, and can
149 be hidden entirely by defining OPENSSL_API_COMPAT with a suitable
150 version value, see openssl_user_macros(7):
151
152 #include <openssl/rsa.h>
153
154 int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
155
156 #include <openssl/dh.h>
157
158 int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
159
160 #include <openssl/ec.h>
161
162 int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
163
165 EVP_PKEY_CTX_ctrl() sends a control operation to the context ctx. The
166 key type used must match keytype if it is not -1. The parameter optype
167 is a mask indicating which operations the control can be applied to.
168 The control command is indicated in cmd and any additional arguments in
169 p1 and p2.
170
171 For cmd = EVP_PKEY_CTRL_SET_MAC_KEY, p1 is the length of the MAC key,
172 and p2 is the MAC key. This is used by Poly1305, SipHash, HMAC and
173 CMAC.
174
175 Applications will not normally call EVP_PKEY_CTX_ctrl() directly but
176 will instead call one of the algorithm specific functions below.
177
178 EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a uint64
179 value as p2 to EVP_PKEY_CTX_ctrl().
180
181 EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
182 specific control operation to a context ctx in string form. This is
183 intended to be used for options specified on the command line or in
184 text files. The commands supported are documented in the openssl
185 utility command line pages for the option -pkeyopt which is supported
186 by the pkeyutl, genpkey and req commands.
187
188 EVP_PKEY_CTX_md() sends a message digest control operation to the
189 context ctx. The message digest is specified by its name md.
190
191 EVP_PKEY_CTX_set_signature_md() sets the message digest type used in a
192 signature. It can be used in the RSA, DSA and ECDSA algorithms.
193
194 EVP_PKEY_CTX_get_signature_md()gets the message digest type used in a
195 signature. It can be used in the RSA, DSA and ECDSA algorithms.
196
197 Key generation typically involves setting up parameters to be used and
198 generating the private and public key data. Some algorithm
199 implementations allow private key data to be set explicitly using
200 EVP_PKEY_CTX_set_mac_key(). In this case key generation is simply the
201 process of setting up the parameters for the key and then setting the
202 raw key data to the value explicitly. Normally applications would call
203 EVP_PKEY_new_raw_private_key(3) or similar functions instead.
204
205 EVP_PKEY_CTX_set_mac_key() can be used with any of the algorithms
206 supported by the EVP_PKEY_new_raw_private_key(3) function.
207
208 EVP_PKEY_CTX_set_group_name() sets the group name to name for parameter
209 and key generation. For example for EC keys this will set the curve
210 name and for DH keys it will set the name of the finite field group.
211
212 EVP_PKEY_CTX_get_group_name() finds the group name that's currently set
213 with ctx, and writes it to the location that name points at, as long as
214 its size namelen is large enough to store that name, including a
215 terminating NUL byte.
216
217 RSA parameters
218 EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for ctx. The
219 pad parameter can take the value RSA_PKCS1_PADDING for PKCS#1 padding,
220 RSA_NO_PADDING for no padding, RSA_PKCS1_OAEP_PADDING for OAEP padding
221 (encrypt and decrypt only), RSA_X931_PADDING for X9.31 padding
222 (signature operations only), RSA_PKCS1_PSS_PADDING (sign and verify
223 only) and RSA_PKCS1_WITH_TLS_PADDING for TLS RSA ClientKeyExchange
224 message padding (decryption only).
225
226 Two RSA padding modes behave differently if
227 EVP_PKEY_CTX_set_signature_md() is used. If this function is called for
228 PKCS#1 padding the plaintext buffer is an actual digest value and is
229 encapsulated in a DigestInfo structure according to PKCS#1 when signing
230 and this structure is expected (and stripped off) when verifying. If
231 this control is not used with RSA and PKCS#1 padding then the supplied
232 data is used directly and not encapsulated. In the case of X9.31
233 padding for RSA the algorithm identifier byte is added or checked and
234 removed if this control is called. If it is not called then the first
235 byte of the plaintext buffer is expected to be the algorithm identifier
236 byte.
237
238 EVP_PKEY_CTX_get_rsa_padding() gets the RSA padding mode for ctx.
239
240 EVP_PKEY_CTX_set_rsa_pss_saltlen() sets the RSA PSS salt length to
241 saltlen. As its name implies it is only supported for PSS padding. If
242 this function is not called then the salt length is maximized up to the
243 digest length when signing and auto detection when verifying. Four
244 special values are supported:
245
246 RSA_PSS_SALTLEN_DIGEST
247 sets the salt length to the digest length.
248
249 RSA_PSS_SALTLEN_MAX
250 sets the salt length to the maximum permissible value.
251
252 RSA_PSS_SALTLEN_AUTO
253 causes the salt length to be automatically determined based on the
254 PSS block structure when verifying. When signing, it has the same
255 meaning as RSA_PSS_SALTLEN_MAX.
256
257 RSA_PSS_SALTLEN_AUTO_DIGEST_MAX
258 causes the salt length to be automatically determined based on the
259 PSS block structure when verifying, like RSA_PSS_SALTLEN_AUTO.
260 When signing, the salt length is maximized up to a maximum of the
261 digest length to comply with FIPS 186-4 section 5.5.
262
263 EVP_PKEY_CTX_get_rsa_pss_saltlen() gets the RSA PSS salt length for
264 ctx. The padding mode must already have been set to
265 RSA_PKCS1_PSS_PADDING.
266
267 EVP_PKEY_CTX_set_rsa_keygen_bits() sets the RSA key length for RSA key
268 generation to bits. If not specified 2048 bits is used.
269
270 EVP_PKEY_CTX_set1_rsa_keygen_pubexp() sets the public exponent value
271 for RSA key generation to the value stored in pubexp. Currently it
272 should be an odd integer. In accordance with the OpenSSL naming
273 convention, the pubexp pointer must be freed independently of the
274 EVP_PKEY_CTX (ie, it is internally copied). If not specified 65537 is
275 used.
276
277 EVP_PKEY_CTX_set_rsa_keygen_pubexp() does the same as
278 EVP_PKEY_CTX_set1_rsa_keygen_pubexp() except that there is no internal
279 copy and therefore pubexp should not be modified or freed after the
280 call.
281
282 EVP_PKEY_CTX_set_rsa_keygen_primes() sets the number of primes for RSA
283 key generation to primes. If not specified 2 is used.
284
285 EVP_PKEY_CTX_set_rsa_mgf1_md_name() sets the MGF1 digest for RSA
286 padding schemes to the digest named mdname. If the RSA algorithm
287 implementation for the selected provider supports it then the digest
288 will be fetched using the properties mdprops. If not explicitly set the
289 signing digest is used. The padding mode must have been set to
290 RSA_PKCS1_OAEP_PADDING or RSA_PKCS1_PSS_PADDING.
291
292 EVP_PKEY_CTX_set_rsa_mgf1_md() does the same as
293 EVP_PKEY_CTX_set_rsa_mgf1_md_name() except that the name of the digest
294 is inferred from the supplied md and it is not possible to specify any
295 properties.
296
297 EVP_PKEY_CTX_get_rsa_mgf1_md_name() gets the name of the MGF1 digest
298 algorithm for ctx. If not explicitly set the signing digest is used.
299 The padding mode must have been set to RSA_PKCS1_OAEP_PADDING or
300 RSA_PKCS1_PSS_PADDING.
301
302 EVP_PKEY_CTX_get_rsa_mgf1_md() does the same as
303 EVP_PKEY_CTX_get_rsa_mgf1_md_name() except that it returns a pointer to
304 an EVP_MD object instead. Note that only known, built-in EVP_MD objects
305 will be returned. The EVP_MD object may be NULL if the digest is not
306 one of these (such as a digest only implemented in a third party
307 provider).
308
309 EVP_PKEY_CTX_set_rsa_oaep_md_name() sets the message digest type used
310 in RSA OAEP to the digest named mdname. If the RSA algorithm
311 implementation for the selected provider supports it then the digest
312 will be fetched using the properties mdprops. The padding mode must
313 have been set to RSA_PKCS1_OAEP_PADDING.
314
315 EVP_PKEY_CTX_set_rsa_oaep_md() does the same as
316 EVP_PKEY_CTX_set_rsa_oaep_md_name() except that the name of the digest
317 is inferred from the supplied md and it is not possible to specify any
318 properties.
319
320 EVP_PKEY_CTX_get_rsa_oaep_md_name() gets the message digest algorithm
321 name used in RSA OAEP and stores it in the buffer name which is of size
322 namelen. The padding mode must have been set to RSA_PKCS1_OAEP_PADDING.
323 The buffer should be sufficiently large for any expected digest
324 algorithm names or the function will fail.
325
326 EVP_PKEY_CTX_get_rsa_oaep_md() does the same as
327 EVP_PKEY_CTX_get_rsa_oaep_md_name() except that it returns a pointer to
328 an EVP_MD object instead. Note that only known, built-in EVP_MD objects
329 will be returned. The EVP_MD object may be NULL if the digest is not
330 one of these (such as a digest only implemented in a third party
331 provider).
332
333 EVP_PKEY_CTX_set0_rsa_oaep_label() sets the RSA OAEP label to binary
334 data label and its length in bytes to len. If label is NULL or len is
335 0, the label is cleared. The library takes ownership of the label so
336 the caller should not free the original memory pointed to by label.
337 The padding mode must have been set to RSA_PKCS1_OAEP_PADDING.
338
339 EVP_PKEY_CTX_get0_rsa_oaep_label() gets the RSA OAEP label to label.
340 The return value is the label length. The padding mode must have been
341 set to RSA_PKCS1_OAEP_PADDING. The resulting pointer is owned by the
342 library and should not be freed by the caller.
343
344 RSA_PKCS1_WITH_TLS_PADDING is used when decrypting an RSA encrypted TLS
345 pre-master secret in a TLS ClientKeyExchange message. It is the same as
346 RSA_PKCS1_PADDING except that it additionally verifies that the result
347 is the correct length and the first two bytes are the protocol version
348 initially requested by the client. If the encrypted content is publicly
349 invalid then the decryption will fail. However, if the padding checks
350 fail then decryption will still appear to succeed but a random TLS
351 premaster secret will be returned instead. This padding mode accepts
352 two parameters which can be set using the EVP_PKEY_CTX_set_params(3)
353 function. These are OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION and
354 OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are
355 expected to be unsigned integers. Normally only the first of these will
356 be set and represents the TLS protocol version that was first requested
357 by the client (e.g. 0x0303 for TLSv1.2, 0x0302 for TLSv1.1 etc).
358 Historically some buggy clients would use the negotiated protocol
359 version instead of the protocol version first requested. If this
360 behaviour should be tolerated then
361 OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the
362 actual negotiated protocol version. Otherwise it should be left unset.
363
364 Similarly to the RSA_PKCS1_WITH_TLS_PADDING above, since OpenSSL
365 version 3.1.0, the use of RSA_PKCS1_PADDING will return a randomly
366 generated message instead of padding errors in case padding checks
367 fail. Applications that want to remain secure while using earlier
368 versions of OpenSSL, still need to handle both the error code from the
369 RSA decryption operation and the returned message in a side channel
370 secure manner. This protection against Bleichenbacher attacks can be
371 disabled by setting the OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION (an
372 unsigned integer) to 0.
373
374 DSA parameters
375 EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for
376 DSA parameter generation to nbits. If not specified, 2048 is used.
377
378 EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the
379 subprime parameter q for DSA parameter generation to qbits. If not
380 specified, 224 is used. If a digest function is specified below, this
381 parameter is ignored and instead, the number of bits in q matches the
382 size of the digest.
383
384 EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for
385 DSA parameter generation to md. If not specified, one of SHA-1,
386 SHA-224, or SHA-256 is selected to match the bit length of q above.
387
388 EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used
389 for DSA parameter generation using md_name and md_properties to
390 retrieve the digest from a provider. If not specified, md_name will be
391 set to one of SHA-1, SHA-224, or SHA-256 depending on the bit length of
392 q above. md_properties is a property query string that has a default
393 value of '' if not specified.
394
395 EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the gindex used by the
396 generator G. The default value is -1 which uses unverifiable g,
397 otherwise a positive value uses verifiable g. This value must be saved
398 if key validation of g is required, since it is not part of a persisted
399 key.
400
401 EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the seed to use for
402 generation rather than using a randomly generated value for the seed.
403 This is useful for testing purposes only and can fail if the seed does
404 not produce primes for both p & q on its first iteration. This value
405 must be saved if key validation of p, q, and verifiable g are required,
406 since it is not part of a persisted key.
407
408 EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use
409 FIPS186-4 generation if name is "fips186_4", or FIPS186-2 generation if
410 name is "fips186_2". The default value for the default provider is
411 "fips186_2". The default value for the FIPS provider is "fips186_4".
412
413 DH parameters
414 EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH
415 prime parameter p for DH parameter generation. If this function is not
416 called then 2048 is used. Only accepts lengths greater than or equal to
417 256.
418
419 EVP_PKEY_CTX_set_dh_paramgen_subprime_len() sets the length of the DH
420 optional subprime parameter q for DH parameter generation. The default
421 is 256 if the prime is at least 2048 bits long or 160 otherwise. The DH
422 paramgen type must have been set to "fips186_4".
423
424 EVP_PKEY_CTX_set_dh_paramgen_generator() sets DH generator to gen for
425 DH parameter generation. If not specified 2 is used.
426
427 EVP_PKEY_CTX_set_dh_paramgen_type() sets the key type for DH parameter
428 generation. The supported parameters are:
429
430 DH_PARAMGEN_TYPE_GROUP
431 Use a named group. If only the safe prime parameter p is set this
432 can be used to select a ffdhe safe prime group of the correct size.
433
434 DH_PARAMGEN_TYPE_FIPS_186_4
435 FIPS186-4 FFC parameter generator.
436
437 DH_PARAMGEN_TYPE_FIPS_186_2
438 FIPS186-2 FFC parameter generator (X9.42 DH).
439
440 DH_PARAMGEN_TYPE_GENERATOR
441 Uses a safe prime generator g (PKCS#3 format).
442
443 The default in the default provider is DH_PARAMGEN_TYPE_GENERATOR for
444 the "DH" keytype, and DH_PARAMGEN_TYPE_FIPS_186_2 for the "DHX"
445 keytype. In the FIPS provider the default value is
446 DH_PARAMGEN_TYPE_GROUP for the "DH" keytype and
447 <DH_PARAMGEN_TYPE_FIPS_186_4 for the "DHX" keytype.
448
449 EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the gindex used by the
450 generator G. The default value is -1 which uses unverifiable g,
451 otherwise a positive value uses verifiable g. This value must be saved
452 if key validation of g is required, since it is not part of a persisted
453 key.
454
455 EVP_PKEY_CTX_set_dh_paramgen_seed() sets the seed to use for generation
456 rather than using a randomly generated value for the seed. This is
457 useful for testing purposes only and can fail if the seed does not
458 produce primes for both p & q on its first iteration. This value must
459 be saved if key validation of p, q, and verifiable g are required,
460 since it is not part of a persisted key.
461
462 EVP_PKEY_CTX_set_dh_pad() sets the DH padding mode. If pad is 1 the
463 shared secret is padded with zeros up to the size of the DH prime p.
464 If pad is zero (the default) then no padding is performed.
465
466 EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values
467 corresponding to nid as defined in RFC7919 or RFC3526. The nid
468 parameter must be NID_ffdhe2048, NID_ffdhe3072, NID_ffdhe4096,
469 NID_ffdhe6144, NID_ffdhe8192, NID_modp_1536, NID_modp_2048,
470 NID_modp_3072, NID_modp_4096, NID_modp_6144, NID_modp_8192 or NID_undef
471 to clear the stored value. This function can be called during parameter
472 or key generation. The nid parameter and the rfc5114 parameter are
473 mutually exclusive.
474
475 EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() both
476 set the DH parameters to the values defined in RFC5114. The rfc5114
477 parameter must be 1, 2 or 3 corresponding to RFC5114 sections 2.1, 2.2
478 and 2.3. or 0 to clear the stored value. This macro can be called
479 during parameter generation. The ctx must have a key type of
480 EVP_PKEY_DHX. The rfc5114 parameter and the nid parameter are mutually
481 exclusive.
482
483 DH key derivation function parameters
484 Note that all of the following functions require that the ctx parameter
485 has a private key type of EVP_PKEY_DHX. When using key derivation, the
486 output of EVP_PKEY_derive() is the output of the KDF instead of the DH
487 shared secret. The KDF output is typically used as a Key Encryption
488 Key (KEK) that in turn encrypts a Content Encryption Key (CEK).
489
490 EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to
491 kdf for DH key derivation. Possible values are EVP_PKEY_DH_KDF_NONE and
492 EVP_PKEY_DH_KDF_X9_42 which uses the key derivation specified in
493 RFC2631 (based on the keying algorithm described in X9.42). When using
494 key derivation, the kdf_oid, kdf_md and kdf_outlen parameters must also
495 be specified.
496
497 EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type
498 for ctx used for DH key derivation. Possible values are
499 EVP_PKEY_DH_KDF_NONE and EVP_PKEY_DH_KDF_X9_42.
500
501 EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object
502 identifier to oid for DH key derivation. This OID should identify the
503 algorithm to be used with the Content Encryption Key. The library
504 takes ownership of the object identifier so the caller should not free
505 the original memory pointed to by oid.
506
507 EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for
508 ctx used for DH key derivation. The resulting pointer is owned by the
509 library and should not be freed by the caller.
510
511 EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message
512 digest to md for DH key derivation. Note that RFC2631 specifies that
513 this digest should be SHA1 but OpenSSL tolerates other digests.
514
515 EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message
516 digest for ctx used for DH key derivation.
517
518 EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function
519 output length to len for DH key derivation.
520
521 EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function
522 output length for ctx used for DH key derivation.
523
524 EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to ukm and
525 its length to len for DH key derivation. This parameter is optional and
526 corresponds to the partyAInfo field in RFC2631 terms. The specification
527 requires that it is 512 bits long but this is not enforced by OpenSSL.
528 The library takes ownership of the user key material so the caller
529 should not free the original memory pointed to by ukm.
530
531 EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for ctx. The
532 return value is the user key material length. The resulting pointer is
533 owned by the library and should not be freed by the caller.
534
535 EC parameters
536 Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve
537 name to name for parameter and key generation.
538
539 EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as
540 EVP_PKEY_CTX_set_group_name(), but is specific to EC and uses a nid
541 rather than a name string.
542
543 For EC parameter generation, one of EVP_PKEY_CTX_set_group_name() or
544 EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error
545 occurs because there is no default curve. These function can also be
546 called to set the curve explicitly when generating an EC key.
547
548 EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain
549 the curve name that's currently set with ctx.
550
551 EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to
552 param_enc when generating EC parameters or an EC key. The encoding can
553 be OPENSSL_EC_EXPLICIT_CURVE for explicit parameters (the default in
554 versions of OpenSSL before 1.1.0) or OPENSSL_EC_NAMED_CURVE to use
555 named curve form. For maximum compatibility the named curve form
556 should be used. Note: the OPENSSL_EC_NAMED_CURVE value was added in
557 OpenSSL 1.1.0; previous versions should use 0 instead.
558
559 ECDH parameters
560 EVP_PKEY_CTX_set_ecdh_cofactor_mode() sets the cofactor mode to
561 cofactor_mode for ECDH key derivation. Possible values are 1 to enable
562 cofactor key derivation, 0 to disable it and -1 to clear the stored
563 cofactor mode and fallback to the private key cofactor mode.
564
565 EVP_PKEY_CTX_get_ecdh_cofactor_mode() returns the cofactor mode for ctx
566 used for ECDH key derivation. Possible values are 1 when cofactor key
567 derivation is enabled and 0 otherwise.
568
569 ECDH key derivation function parameters
570 EVP_PKEY_CTX_set_ecdh_kdf_type() sets the key derivation function type
571 to kdf for ECDH key derivation. Possible values are
572 EVP_PKEY_ECDH_KDF_NONE and EVP_PKEY_ECDH_KDF_X9_63 which uses the key
573 derivation specified in X9.63. When using key derivation, the kdf_md
574 and kdf_outlen parameters must also be specified.
575
576 EVP_PKEY_CTX_get_ecdh_kdf_type() returns the key derivation function
577 type for ctx used for ECDH key derivation. Possible values are
578 EVP_PKEY_ECDH_KDF_NONE and EVP_PKEY_ECDH_KDF_X9_63.
579
580 EVP_PKEY_CTX_set_ecdh_kdf_md() sets the key derivation function message
581 digest to md for ECDH key derivation. Note that X9.63 specifies that
582 this digest should be SHA1 but OpenSSL tolerates other digests.
583
584 EVP_PKEY_CTX_get_ecdh_kdf_md() gets the key derivation function message
585 digest for ctx used for ECDH key derivation.
586
587 EVP_PKEY_CTX_set_ecdh_kdf_outlen() sets the key derivation function
588 output length to len for ECDH key derivation.
589
590 EVP_PKEY_CTX_get_ecdh_kdf_outlen() gets the key derivation function
591 output length for ctx used for ECDH key derivation.
592
593 EVP_PKEY_CTX_set0_ecdh_kdf_ukm() sets the user key material to ukm for
594 ECDH key derivation. This parameter is optional and corresponds to the
595 shared info in X9.63 terms. The library takes ownership of the user key
596 material so the caller should not free the original memory pointed to
597 by ukm.
598
599 EVP_PKEY_CTX_get0_ecdh_kdf_ukm() gets the user key material for ctx.
600 The return value is the user key material length. The resulting pointer
601 is owned by the library and should not be freed by the caller.
602
603 Other parameters
604 EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
605 EVP_PKEY_CTX_get1_id_len() are used to manipulate the special
606 identifier field for specific signature algorithms such as SM2. The
607 EVP_PKEY_CTX_set1_id() sets an ID pointed by id with the length id_len
608 to the library. The library takes a copy of the id so that the caller
609 can safely free the original memory pointed to by id.
610 EVP_PKEY_CTX_get1_id_len() returns the length of the ID set via a
611 previous call to EVP_PKEY_CTX_set1_id(). The length is usually used to
612 allocate adequate memory for further calls to EVP_PKEY_CTX_get1_id().
613 EVP_PKEY_CTX_get1_id() returns the previously set ID value to caller in
614 id. The caller should allocate adequate memory space for the id before
615 calling EVP_PKEY_CTX_get1_id().
616
617 EVP_PKEY_CTX_set_kem_op() sets the KEM operation to run. This can be
618 set after EVP_PKEY_encapsulate_init() or EVP_PKEY_decapsulate_init() to
619 select the kem operation. RSA is the only key type that supports
620 encapsulation currently, and as there is no default operation for the
621 RSA type, this function must be called before EVP_PKEY_encapsulate() or
622 EVP_PKEY_decapsulate().
623
625 All other functions described on this page return a positive value for
626 success and 0 or a negative value for failure. In particular a return
627 value of -2 indicates the operation is not supported by the public key
628 algorithm.
629
631 EVP_PKEY_CTX_set_params(3), EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3),
632 EVP_PKEY_decrypt(3), EVP_PKEY_sign(3), EVP_PKEY_verify(3),
633 EVP_PKEY_verify_recover(3), EVP_PKEY_derive(3), EVP_PKEY_keygen(3)
634 EVP_PKEY_encapsulate(3) EVP_PKEY_decapsulate(3)
635
637 EVP_PKEY_CTX_get_rsa_oaep_md_name(),
638 EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
639 EVP_PKEY_CTX_set_rsa_mgf1_md_name(),
640 EVP_PKEY_CTX_set_rsa_oaep_md_name(),
641 EVP_PKEY_CTX_set_dsa_paramgen_md_props(),
642 EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
643 EVP_PKEY_CTX_set_dsa_paramgen_type(),
644 EVP_PKEY_CTX_set_dsa_paramgen_seed(), EVP_PKEY_CTX_set_group_name() and
645 EVP_PKEY_CTX_get_group_name() were added in OpenSSL 3.0.
646
647 The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
648 EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions
649 were added in OpenSSL 1.0.0.
650
651 In OpenSSL 1.1.1 and below the functions were mostly macros. From
652 OpenSSL 3.0 they are all functions.
653
654 EVP_PKEY_CTX_set_rsa_keygen_pubexp(), EVP_PKEY_CTX_get0_dh_kdf_ukm(),
655 and EVP_PKEY_CTX_get0_ecdh_kdf_ukm() were deprecated in OpenSSL 3.0.
656
658 Copyright 2006-2022 The OpenSSL Project Authors. All Rights Reserved.
659
660 Licensed under the Apache License 2.0 (the "License"). You may not use
661 this file except in compliance with the License. You can obtain a copy
662 in the file LICENSE in the source distribution or at
663 <https://www.openssl.org/source/license.html>.
664
665
666
6673.1.1 2023-08-31 EVP_PKEY_CTX_CTRL(3ossl)