1math::bignum(n) Tcl Math Library math::bignum(n)
2
3
4
5______________________________________________________________________________
6
8 math::bignum - Arbitrary precision integer numbers
9
11 package require Tcl ?8.4?
12
13 package require math::bignum ?3.1?
14
15 ::math::bignum::fromstr string ?radix?
16
17 ::math::bignum::tostr bignum ?radix?
18
19 ::math::bignum::sign bignum
20
21 ::math::bignum::abs bignum
22
23 ::math::bignum::cmp a b
24
25 ::math::bignum::iszero bignum
26
27 ::math::bignum::lt a b
28
29 ::math::bignum::le a b
30
31 ::math::bignum::gt a b
32
33 ::math::bignum::ge a b
34
35 ::math::bignum::eq a b
36
37 ::math::bignum::ne a b
38
39 ::math::bignum::isodd bignum
40
41 ::math::bignum::iseven bignum
42
43 ::math::bignum::add a b
44
45 ::math::bignum::sub a b
46
47 ::math::bignum::mul a b
48
49 ::math::bignum::divqr a b
50
51 ::math::bignum::div a b
52
53 ::math::bignum::rem a b
54
55 ::math::bignum::mod n m
56
57 ::math::bignum::pow base exp
58
59 ::math::bignum::powm base exp m
60
61 ::math::bignum::sqrt bignum
62
63 ::math::bignum::rand bits
64
65 ::math::bignum::lshift bignum bits
66
67 ::math::bignum::rshift bignum bits
68
69 ::math::bignum::bitand a b
70
71 ::math::bignum::bitor a b
72
73 ::math::bignum::bitxor a b
74
75 ::math::bignum::setbit bignumVar bit
76
77 ::math::bignum::clearbit bignumVar bit
78
79 ::math::bignum::testbit bignum bit
80
81 ::math::bignum::bits bignum
82
83______________________________________________________________________________
84
86 The bignum package provides arbitrary precision integer math (also
87 known as "big numbers") capabilities to the Tcl language. Big numbers
88 are internally represented at Tcl lists: this package provides a set of
89 procedures operating against the internal representation in order to:
90
91 • perform math operations
92
93 • convert bignums from the internal representation to a string in
94 the desired radix and vice versa.
95
96 But the two constants "0" and "1" are automatically converted to the
97 internal representation, in order to easily compare a number to zero,
98 or increment a big number.
99
100 The bignum interface is opaque, so operations on bignums that are not
101 returned by procedures in this package (but created by hand) may lead
102 to unspecified behaviours. It's safe to treat bignums as pure values,
103 so there is no need to free a bignum, or to duplicate it via a special
104 operation.
105
107 This section shows some simple example. This library being just a way
108 to perform math operations, examples may be the simplest way to learn
109 how to work with it. Consult the API section of this man page for in‐
110 formation about individual procedures.
111
112 package require math::bignum
113
114 # Multiplication of two bignums
115 set a [::math::bignum::fromstr 88888881111111]
116 set b [::math::bignum::fromstr 22222220000000]
117 set c [::math::bignum::mul $a $b]
118 puts [::math::bignum::tostr $c] ; # => will output 1975308271604953086420000000
119 set c [::math::bignum::sqrt $c]
120 puts [::math::bignum::tostr $c] ; # => will output 44444440277777
121
122 # From/To string conversion in different radix
123 set a [::math::bignum::fromstr 1100010101010111001001111010111 2]
124 puts [::math::bignum::tostr $a 16] ; # => will output 62ab93d7
125
126 # Factorial example
127 proc fact n {
128 # fromstr is not needed for 0 and 1
129 set z 1
130 for {set i 2} {$i <= $n} {incr i} {
131 set z [::math::bignum::mul $z [::math::bignum::fromstr $i]]
132 }
133 return $z
134 }
135
136 puts [::math::bignum::tostr [fact 100]]
137
138
140 ::math::bignum::fromstr string ?radix?
141 Convert string into a bignum. If radix is omitted or zero, the
142 string is interpreted in hex if prefixed with 0x, in octal if
143 prefixed with ox, in binary if it's pefixed with bx, as a number
144 in radix 10 otherwise. If instead the radix argument is speci‐
145 fied in the range 2-36, the string is interpreted in the given
146 radix. Please note that this conversion is not needed for two
147 constants : 0 and 1. (see the example)
148
149 ::math::bignum::tostr bignum ?radix?
150 Convert bignum into a string representing the number in the
151 specified radix. If radix is omitted, the default is 10.
152
153 ::math::bignum::sign bignum
154 Return the sign of the bignum. The procedure returns 0 if the
155 number is positive, 1 if it's negative.
156
157 ::math::bignum::abs bignum
158 Return the absolute value of the bignum.
159
160 ::math::bignum::cmp a b
161 Compare the two bignums a and b, returning 0 if a == b, 1 if a >
162 b, and -1 if a < b.
163
164 ::math::bignum::iszero bignum
165 Return true if bignum value is zero, otherwise false is re‐
166 turned.
167
168 ::math::bignum::lt a b
169 Return true if a < b, otherwise false is returned.
170
171 ::math::bignum::le a b
172 Return true if a <= b, otherwise false is returned.
173
174 ::math::bignum::gt a b
175 Return true if a > b, otherwise false is returned.
176
177 ::math::bignum::ge a b
178 Return true if a >= b, otherwise false is returned.
179
180 ::math::bignum::eq a b
181 Return true if a == b, otherwise false is returned.
182
183 ::math::bignum::ne a b
184 Return true if a != b, otherwise false is returned.
185
186 ::math::bignum::isodd bignum
187 Return true if bignum is odd.
188
189 ::math::bignum::iseven bignum
190 Return true if bignum is even.
191
192 ::math::bignum::add a b
193 Return the sum of the two bignums a and b.
194
195 ::math::bignum::sub a b
196 Return the difference of the two bignums a and b.
197
198 ::math::bignum::mul a b
199 Return the product of the two bignums a and b. The implementa‐
200 tion uses Karatsuba multiplication if both the numbers are big‐
201 ger than a given threshold, otherwise the direct algorith is
202 used.
203
204 ::math::bignum::divqr a b
205 Return a two-elements list containing as first element the quo‐
206 tient of the division between the two bignums a and b, and the
207 remainder of the division as second element.
208
209 ::math::bignum::div a b
210 Return the quotient of the division between the two bignums a
211 and b.
212
213 ::math::bignum::rem a b
214 Return the remainder of the division between the two bignums a
215 and b.
216
217 ::math::bignum::mod n m
218 Return n modulo m. This operation is called modular reduction.
219
220 ::math::bignum::pow base exp
221 Return base raised to the exponent exp.
222
223 ::math::bignum::powm base exp m
224 Return base raised to the exponent exp, modulo m. This function
225 is often used in the field of cryptography.
226
227 ::math::bignum::sqrt bignum
228 Return the integer part of the square root of bignum
229
230 ::math::bignum::rand bits
231 Return a random number of at most bits bits. The returned num‐
232 ber is internally generated using Tcl's expr rand() function and
233 is not suitable where an unguessable and cryptographically se‐
234 cure random number is needed.
235
236 ::math::bignum::lshift bignum bits
237 Return the result of left shifting bignum's binary representa‐
238 tion of bits positions on the left. This is equivalent to mul‐
239 tiplying by 2^bits but much faster.
240
241 ::math::bignum::rshift bignum bits
242 Return the result of right shifting bignum's binary representa‐
243 tion of bits positions on the right. This is equivalent to di‐
244 viding by 2^bits but much faster.
245
246 ::math::bignum::bitand a b
247 Return the result of doing a bitwise AND operation on a and b.
248 The operation is restricted to positive numbers, including zero.
249 When negative numbers are provided as arguments the result is
250 undefined.
251
252 ::math::bignum::bitor a b
253 Return the result of doing a bitwise OR operation on a and b.
254 The operation is restricted to positive numbers, including zero.
255 When negative numbers are provided as arguments the result is
256 undefined.
257
258 ::math::bignum::bitxor a b
259 Return the result of doing a bitwise XOR operation on a and b.
260 The operation is restricted to positive numbers, including zero.
261 When negative numbers are provided as arguments the result is
262 undefined.
263
264 ::math::bignum::setbit bignumVar bit
265 Set the bit at bit position to 1 in the bignum stored in the
266 variable bignumVar. Bit 0 is the least significant.
267
268 ::math::bignum::clearbit bignumVar bit
269 Set the bit at bit position to 0 in the bignum stored in the
270 variable bignumVar. Bit 0 is the least significant.
271
272 ::math::bignum::testbit bignum bit
273 Return true if the bit at the bit position of bignum is on, oth‐
274 erwise false is returned. If bit is out of range, it is consid‐
275 ered as set to zero.
276
277 ::math::bignum::bits bignum
278 Return the number of bits needed to represent bignum in radix 2.
279
281 This document, and the package it describes, will undoubtedly contain
282 bugs and other problems. Please report such in the category math ::
283 bignum of the Tcllib Trackers [http://core.tcl.tk/tcllib/reportlist].
284 Please also report any ideas for enhancements you may have for either
285 package and/or documentation.
286
287 When proposing code changes, please provide unified diffs, i.e the out‐
288 put of diff -u.
289
290 Note further that attachments are strongly preferred over inlined
291 patches. Attachments can be made by going to the Edit form of the
292 ticket immediately after its creation, and then using the left-most
293 button in the secondary navigation bar.
294
296 bignums, math, multiprecision, tcl
297
299 Mathematics
300
302 Copyright (c) 2004 Salvatore Sanfilippo <antirez at invece dot org>
303 Copyright (c) 2004 Arjen Markus <arjenmarkus at users dot sourceforge dot net>
304
305
306
307
308tcllib 3.1 math::bignum(n)