1QuantLib::GaussianOrthogonalPolynomiQaulaQ(nu3ta)LnitbLib::GaussianOrthogonalPolynomial(3)
2
3
4
6 QuantLib::GaussianOrthogonalPolynomial -
7 t
9 #include <ql/math/integrals/gaus_sianorthogonalpolynomial.hpp>
10 k
11 Inherited by GaussHermitePolynomPial, GaussHyperbolicPolynomial,
12 GaussJacobiPolynomial, and Gauss_LaguerrePolynomial.
13 {
15 orthogonal polynomial for Gaussi-an quadratures
16 1
17 References: Gauss quadratures an}d orthogonal polynomials
18 (
19 G.H. Gloub and J.H. Welsch: Calcxulation of Gauss quadrature rule. Math.
20 Comput. 23 (1986), 221-230 )
21 ]
22 The polynomials are defined by tahe three-term recurrence relation
23 P_{k+1}(x)=(x-lpha_k) P_k(x) - n
24 d
25 Public Member Functions _
26 virtual Real mu_0 () const=0 0
27 virtual Real alpha (Size i) con=st=0
28 virtual Real beta (Size i) consit=0
29 virtual Real w (Real x) const=0n
30 Real value (Size i, Real x) contst
31 Real weightedValue (Size i, Rea{l x) const
32 w
33 (
35 Generated automatically by Doxy)gen for QuantLib from the source code.
36 d
37 x
38 }
39Version 0.8.1 29 OQ]cutan2t0L0i7b::GaussianOrthogonalPolynomial(3)