1CGEGS(1)              LAPACK driver routine (version 3.1)             CGEGS(1)
2
3
4

NAME

6       CGEGS - i deprecated and has been replaced by routine CGGES
7

SYNOPSIS

9       SUBROUTINE CGEGS( JOBVSL,  JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, VSL,
10                         LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, INFO )
11
12           CHARACTER     JOBVSL, JOBVSR
13
14           INTEGER       INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
15
16           REAL          RWORK( * )
17
18           COMPLEX       A( LDA, * ), ALPHA( * ), B( LDB, * ), BETA( * ), VSL(
19                         LDVSL, * ), VSR( LDVSR, * ), WORK( * )
20

PURPOSE

22       This routine is deprecated and has been replaced by routine CGGES.
23
24       CGEGS  computes  the eigenvalues, Schur form, and, optionally, the left
25       and or/right Schur vectors of a complex matrix pair (A,B).   Given  two
26       square matrices A and B, the generalized Schur
27       factorization has the form
28
29          A = Q*S*Z**H,  B = Q*T*Z**H
30
31       where  Q  and  Z are unitary matrices and S and T are upper triangular.
32       The columns of Q are the left Schur vectors
33       and the columns of Z are the right Schur vectors.
34
35       If only the eigenvalues of (A,B) are needed, the driver  routine  CGEGV
36       should be used instead.  See CGEGV for a description of the eigenvalues
37       of the generalized nonsymmetric eigenvalue problem (GNEP).
38
39

ARGUMENTS

41       JOBVSL   (input) CHARACTER*1
42                = 'N':  do not compute the left Schur vectors;
43                = 'V':  compute the left Schur vectors (returned in VSL).
44
45       JOBVSR   (input) CHARACTER*1
46                = 'N':  do not compute the right Schur vectors;
47                = 'V':  compute the right Schur vectors (returned in VSR).
48
49       N       (input) INTEGER
50               The order of the matrices A, B, VSL, and VSR.  N >= 0.
51
52       A       (input/output) COMPLEX array, dimension (LDA, N)
53               On entry, the matrix A.  On exit, the upper triangular matrix S
54               from the generalized Schur factorization.
55
56       LDA     (input) INTEGER
57               The leading dimension of A.  LDA >= max(1,N).
58
59       B       (input/output) COMPLEX array, dimension (LDB, N)
60               On entry, the matrix B.  On exit, the upper triangular matrix T
61               from the generalized Schur factorization.
62
63       LDB     (input) INTEGER
64               The leading dimension of B.  LDB >= max(1,N).
65
66       ALPHA   (output) COMPLEX array, dimension (N)
67               The complex scalars alpha that define the eigenvalues of  GNEP.
68               ALPHA(j) = S(j,j), the diagonal element of the Schur form of A.
69
70       BETA    (output) COMPLEX array, dimension (N)
71               The  non-negative real scalars beta that define the eigenvalues
72               of GNEP.  BETA(j) = T(j,j), the diagonal element of the  trian‐
73               gular factor T.
74
75               Together,  the  quantities  alpha = ALPHA(j) and beta = BETA(j)
76               represent the j-th eigenvalue of the matrix pair (A,B), in  one
77               of  the  forms  lambda  = alpha/beta or mu = beta/alpha.  Since
78               either lambda or mu may overflow, they should not, in  general,
79               be computed.
80
81       VSL     (output) COMPLEX array, dimension (LDVSL,N)
82               If  JOBVSL = 'V', the matrix of left Schur vectors Q.  Not ref‐
83               erenced if JOBVSL = 'N'.
84
85       LDVSL   (input) INTEGER
86               The leading dimension of the matrix VSL. LDVSL  >=  1,  and  if
87               JOBVSL = 'V', LDVSL >= N.
88
89       VSR     (output) COMPLEX array, dimension (LDVSR,N)
90               If JOBVSR = 'V', the matrix of right Schur vectors Z.  Not ref‐
91               erenced if JOBVSR = 'N'.
92
93       LDVSR   (input) INTEGER
94               The leading dimension of the matrix VSR. LDVSR  >=  1,  and  if
95               JOBVSR = 'V', LDVSR >= N.
96
97       WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
98               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
99
100       LWORK   (input) INTEGER
101               The  dimension  of  the  array WORK.  LWORK >= max(1,2*N).  For
102               good performance, LWORK must generally be larger.   To  compute
103               the  optimal value of LWORK, call ILAENV to get blocksizes (for
104               CGEQRF, CUNMQR, and CUNGQR.)  Then compute: NB  -- MAX  of  the
105               blocksizes for CGEQRF, CUNMQR, and CUNGQR; the optimal LWORK is
106               N*(NB+1).
107
108               If LWORK = -1, then a workspace query is assumed;  the  routine
109               only  calculates  the  optimal  size of the WORK array, returns
110               this value as the first entry of the WORK array, and  no  error
111               message related to LWORK is issued by XERBLA.
112
113       RWORK   (workspace) REAL array, dimension (3*N)
114
115       INFO    (output) INTEGER
116               = 0:  successful exit
117               < 0:  if INFO = -i, the i-th argument had an illegal value.
118               =1,...,N:  The  QZ  iteration  failed.   (A,B) are not in Schur
119               form,  but  ALPHA(j)  and  BETA(j)  should   be   correct   for
120               j=INFO+1,...,N.   >  N:   errors  that  usually indicate LAPACK
121               problems:
122               =N+1: error return from CGGBAL
123               =N+2: error return from CGEQRF
124               =N+3: error return from CUNMQR
125               =N+4: error return from CUNGQR
126               =N+5: error return from CGGHRD
127               =N+6: error return from CHGEQZ (other  than  failed  iteration)
128               =N+7: error return from CGGBAK (computing VSL)
129               =N+8: error return from CGGBAK (computing VSR)
130               =N+9: error return from CLASCL (various places)
131
132
133
134 LAPACK driver routine (version 3.N1o)vember 2006                        CGEGS(1)
Impressum