1CGGSVP  ‐  unitary  matrices  U,  V  and  Q such that   N‐K‐L K L
2U'*A*Q = K ( 0 A12 A13 ) if M‐K‐L >= 0 SUBROUTINE  CGGSVP(  JOBU,
3JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V,
4LDV, Q, LDQ, IWORK, RWORK, TAU, WORK, INFO )
5    CHARACTER JOBQ, JOBU, JOBV
6    INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
7    REAL TOLA, TOLB
8    INTEGER IWORK( * )
9    REAL RWORK( * )
10    COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), TAU( *  ),  U(
11LDU, * ), V( LDV, * ), WORK( * ) CGGSVP computes unitary matrices
12U, V and Q such that
13              L ( 0     0   A23 )
14          M‐K‐L ( 0     0    0  )
15
16                 N‐K‐L  K    L
17        =     K ( 0    A12  A13 )  if M‐K‐L < 0;
18            M‐K ( 0     0   A23 )
19
20               N‐K‐L  K    L
21 V'*B*Q =   L ( 0     0   B13 )
22          P‐L ( 0     0    0  )
23
24where the K‐by‐K matrix A12 and L‐by‐L matrix B13 are nonsingular
25upper  triangular;  A23 is L‐by‐L upper triangular if M‐K‐L >= 0,
26otherwise A23 is (M‐K)‐by‐L upper trapezoidal.  K+L = the  effec‐
27tive  numerical  rank  of the (M+P)‐by‐N matrix (A',B')'.  Z' de‐
28notes the conjugate transpose of Z.
29
30This decomposition is the preprocessing step  for  computing  the
31Generalized  Singular  Value Decomposition (GSVD), see subroutine
32CGGSVD.
33
34JOBU    (input) CHARACTER*1 = 'U':  Unitary matrix U is computed;
35= 'N':  U is not computed.  JOBV    (input) CHARACTER*1
36= 'V':  Unitary matrix V is computed;
37= 'N':  V is not computed.  JOBQ    (input) CHARACTER*1
38= 'Q':  Unitary matrix Q is computed;
39= 'N':  Q is not computed.  M       (input) INTEGER The number of
40rows  of the matrix A.  M >= 0.  P       (input) INTEGER The num‐
41ber of rows of the matrix B.  P >= 0.   N        (input)  INTEGER
42The  number  of  columns  of  the  matrices  A and B.  N >= 0.  A
43(input/output) COMPLEX array, dimension (LDA,N) On entry, the  M‐
44by‐N  matrix  A.   On  exit, A contains the triangular (or trape‐
45zoidal) matrix described in the Purpose section.  LDA     (input)
46INTEGER The leading dimension of the array A. LDA >= max(1,M).  B
47(input/output) COMPLEX array, dimension (LDB,N) On entry, the  P‐
48by‐N  matrix  B.   On  exit, B contains the triangular matrix de‐
49scribed in the Purpose  section.   LDB      (input)  INTEGER  The
50leading  dimension of the array B. LDB >= max(1,P).  TOLA    (in‐
51put) REAL TOLB    (input) REAL TOLA and TOLB are  the  thresholds
52to  determine the effective numerical rank of matrix B and a sub‐
53block   of   A.   Generally,   they   are   set   to    TOLA    =
54MAX(M,N)*norm(A)*MACHEPS,  TOLB  = MAX(P,N)*norm(B)*MACHEPS.  The
55size of TOLA and TOLB may affect the size of backward  errors  of
56the decomposition.  K       (output) INTEGER L       (output) IN‐
57TEGER On exit, K and L specify the dimension of the subblocks de‐
58scribed  in Purpose section.  K + L = effective numerical rank of
59(A',B')'.  U       (output) COMPLEX array, dimension  (LDU,M)  If
60JOBU = 'U', U contains the unitary matrix U.  If JOBU = 'N', U is
61not referenced.  LDU     (input) INTEGER The leading dimension of
62the  array  U. LDU >= max(1,M) if JOBU = 'U'; LDU >= 1 otherwise.
63V       (output) COMPLEX array, dimension (LDV,M) If JOBV =  'V',
64V  contains the unitary matrix V.  If JOBV = 'N', V is not refer‐
65enced.  LDV     (input) INTEGER The leading dimension of the  ar‐
66ray  V.  LDV  >=  max(1,P)  if JOBV = 'V'; LDV >= 1 otherwise.  Q
67(output) COMPLEX array, dimension (LDQ,N) If JOBQ = 'Q',  Q  con‐
68tains  the unitary matrix Q.  If JOBQ = 'N', Q is not referenced.
69LDQ     (input) INTEGER The leading dimension of the array Q. LDQ
70>=   max(1,N)   if  JOBQ  =  'Q';  LDQ  >=  1  otherwise.   IWORK
71(workspace) INTEGER array, dimension (N) RWORK   (workspace) REAL
72array,  dimension (2*N) TAU     (workspace) COMPLEX array, dimen‐
73sion   (N)   WORK      (workspace)   COMPLEX   array,   dimension
74(max(3*N,M,P)) INFO    (output) INTEGER = 0:  successful exit
75<  0:  if INFO = ‐i, the i‐th argument had an illegal value.  The
76subroutine uses LAPACK subroutine CGEQPF for the QR factorization
77with  column  pivoting  to detect the effective numerical rank of
78the a matrix. It may be replaced by a better  rank  determination
79strategy.
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
Impressum