1CLAR2V(1)           LAPACK auxiliary routine (version 3.1)           CLAR2V(1)
2
3
4

NAME

6       CLAR2V  -  a  vector  of complex plane rotations with real cosines from
7       both sides to a sequence of 2-by-2 complex Hermitian matrices,
8

SYNOPSIS

10       SUBROUTINE CLAR2V( N, X, Y, Z, INCX, C, S, INCC )
11
12           INTEGER        INCC, INCX, N
13
14           REAL           C( * )
15
16           COMPLEX        S( * ), X( * ), Y( * ), Z( * )
17

PURPOSE

19       CLAR2V applies a vector of complex plane rotations  with  real  cosines
20       from  both  sides  to  a sequence of 2-by-2 complex Hermitian matrices,
21       defined by the elements of the vectors x, y and z. For i = 1,2,...,n
22
23          (       x(i)  z(i) ) :=
24          ( conjg(z(i)) y(i) )
25
26            (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
27            ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )
28
29

ARGUMENTS

31       N       (input) INTEGER
32               The number of plane rotations to be applied.
33
34       X       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
35               The vector x; the elements of x are assumed to be real.
36
37       Y       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
38               The vector y; the elements of y are assumed to be real.
39
40       Z       (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
41               The vector z.
42
43       INCX    (input) INTEGER
44               The increment between elements of X, Y and Z. INCX > 0.
45
46       C       (input) REAL array, dimension (1+(N-1)*INCC)
47               The cosines of the plane rotations.
48
49       S       (input) COMPLEX array, dimension (1+(N-1)*INCC)
50               The sines of the plane rotations.
51
52       INCC    (input) INTEGER
53               The increment between elements of C and S. INCC > 0.
54
55
56
57 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       CLAR2V(1)
Impressum