1CLARFT(1) LAPACK auxiliary routine (version 3.1) CLARFT(1)
2
3
4
6 CLARFT - the triangular factor T of a complex block reflector H of
7 order n, which is defined as a product of k elementary reflectors
8
10 SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
11
12 CHARACTER DIRECT, STOREV
13
14 INTEGER K, LDT, LDV, N
15
16 COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
17
19 CLARFT forms the triangular factor T of a complex block reflector H of
20 order n, which is defined as a product of k elementary reflectors.
21
22 If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
23
24 If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
25
26 If STOREV = 'C', the vector which defines the elementary reflector H(i)
27 is stored in the i-th column of the array V, and
28
29 H = I - V * T * V'
30
31 If STOREV = 'R', the vector which defines the elementary reflector H(i)
32 is stored in the i-th row of the array V, and
33
34 H = I - V' * T * V
35
36
38 DIRECT (input) CHARACTER*1
39 Specifies the order in which the elementary reflectors are mul‐
40 tiplied to form the block reflector:
41 = 'F': H = H(1) H(2) . . . H(k) (Forward)
42 = 'B': H = H(k) . . . H(2) H(1) (Backward)
43
44 STOREV (input) CHARACTER*1
45 Specifies how the vectors which define the elementary reflec‐
46 tors are stored (see also Further Details):
47 = 'R': rowwise
48
49 N (input) INTEGER
50 The order of the block reflector H. N >= 0.
51
52 K (input) INTEGER
53 The order of the triangular factor T (= the number of elemen‐
54 tary reflectors). K >= 1.
55
56 V (input/output) COMPLEX array, dimension
57 (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The matrix V.
58 See further details.
59
60 LDV (input) INTEGER
61 The leading dimension of the array V. If STOREV = 'C', LDV >=
62 max(1,N); if STOREV = 'R', LDV >= K.
63
64 TAU (input) COMPLEX array, dimension (K)
65 TAU(i) must contain the scalar factor of the elementary reflec‐
66 tor H(i).
67
68 T (output) COMPLEX array, dimension (LDT,K)
69 The k by k triangular factor T of the block reflector. If
70 DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
71 lower triangular. The rest of the array is not used.
72
73 LDT (input) INTEGER
74 The leading dimension of the array T. LDT >= K.
75
77 The shape of the matrix V and the storage of the vectors which define
78 the H(i) is best illustrated by the following example with n = 5 and k
79 = 3. The elements equal to 1 are not stored; the corresponding array
80 elements are modified but restored on exit. The rest of the array is
81 not used.
82
83 DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
84
85 V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
86 ( v1 1 ) ( 1 v2 v2 v2 )
87 ( v1 v2 1 ) ( 1 v3 v3 )
88 ( v1 v2 v3 )
89 ( v1 v2 v3 )
90
91 DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
92
93 V = ( v1 v2 v3 ) V = ( v1 v1 1 )
94 ( v1 v2 v3 ) ( v2 v2 v2 1 )
95 ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
96 ( 1 v3 )
97 ( 1 )
98
99
100
101
102 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 CLARFT(1)