1CROT(1)             LAPACK auxiliary routine (version 3.1)             CROT(1)
2
3
4

NAME

6       CROT  -  a plane rotation, where the cos (C) is real and the sin (S) is
7       complex, and the vectors CX and CY are complex
8

SYNOPSIS

10       SUBROUTINE CROT( N, CX, INCX, CY, INCY, C, S )
11
12           INTEGER      INCX, INCY, N
13
14           REAL         C
15
16           COMPLEX      S
17
18           COMPLEX      CX( * ), CY( * )
19

PURPOSE

21       CROT   applies a plane rotation, where the cos (C) is real and the  sin
22       (S) is complex, and the vectors CX and CY are complex.
23
24

ARGUMENTS

26       N       (input) INTEGER
27               The number of elements in the vectors CX and CY.
28
29       CX      (input/output) COMPLEX array, dimension (N)
30               On  input, the vector X.  On output, CX is overwritten with C*X
31               + S*Y.
32
33       INCX    (input) INTEGER
34               The increment between successive values of CY.  INCX <> 0.
35
36       CY      (input/output) COMPLEX array, dimension (N)
37               On input, the vector Y.  On  output,  CY  is  overwritten  with
38               -CONJG(S)*X + C*Y.
39
40       INCY    (input) INTEGER
41               The increment between successive values of CY.  INCX <> 0.
42
43       C       (input) REAL
44               S        (input)  COMPLEX  C  and  S  define  a  rotation  [  C
45               S  ] [ -conjg(S)   C  ] where C*C + S*CONJG(S) = 1.0.
46
47
48
49 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                         CROT(1)
Impressum