1CTGEX2(1) LAPACK auxiliary routine (version 3.1) CTGEX2(1)
2
3
4
6 CTGEX2 - adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
7
9 SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, LDZ, J1,
10 INFO )
11
12 LOGICAL WANTQ, WANTZ
13
14 INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N
15
16 COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
17
19 CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) in
20 an upper triangular matrix pair (A, B) by an unitary equivalence transā
21 formation.
22
23 (A, B) must be in generalized Schur canonical form, that is, A and B
24 are both upper triangular.
25
26 Optionally, the matrices Q and Z of generalized Schur vectors are
27 updated.
28
29 Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
30 Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
31
32
33
35 WANTQ (input) LOGICAL
36
37 WANTZ (input) LOGICAL
38
39 N (input) INTEGER
40 The order of the matrices A and B. N >= 0.
41
42 A (input/output) COMPLEX arrays, dimensions (LDA,N)
43 On entry, the matrix A in the pair (A, B). On exit, the
44 updated matrix A.
45
46 LDA (input) INTEGER
47 The leading dimension of the array A. LDA >= max(1,N).
48
49 B (input/output) COMPLEX arrays, dimensions (LDB,N)
50 On entry, the matrix B in the pair (A, B). On exit, the
51 updated matrix B.
52
53 LDB (input) INTEGER
54 The leading dimension of the array B. LDB >= max(1,N).
55
56 Q (input/output) COMPLEX array, dimension (LDZ,N)
57 If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, the
58 updated matrix Q. Not referenced if WANTQ = .FALSE..
59
60 LDQ (input) INTEGER
61 The leading dimension of the array Q. LDQ >= 1; If WANTQ =
62 .TRUE., LDQ >= N.
63
64 Z (input/output) COMPLEX array, dimension (LDZ,N)
65 If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, the
66 updated matrix Z. Not referenced if WANTZ = .FALSE..
67
68 LDZ (input) INTEGER
69 The leading dimension of the array Z. LDZ >= 1; If WANTZ =
70 .TRUE., LDZ >= N.
71
72 J1 (input) INTEGER
73 The index to the first block (A11, B11).
74
75 INFO (output) INTEGER
76 =0: Successful exit.
77 =1: The transformed matrix pair (A, B) would be too far from
78 generalized Schur form; the problem is ill- conditioned.
79
81 Based on contributions by
82 Bo Kagstrom and Peter Poromaa, Department of Computing Science,
83 Umea University, S-901 87 Umea, Sweden.
84
85 In the current code both weak and strong stability tests are performed.
86 The user can omit the strong stability test by changing the internal
87 logical parameter WANDS to .FALSE.. See ref. [2] for details.
88
89 [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
90 Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
91 M.S. Moonen et al (eds), Linear Algebra for Large Scale and
92 Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
93
94 [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
95 Eigenvalues of a Regular Matrix Pair (A, B) and Condition
96 Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
97 Department of Computing Science, Umea University, S-901 87 Umea,
98 Sweden, 1994. Also as LAPACK Working Note 87. To appear in
99 Numerical Algorithms, 1996.
100
101
102
103
104 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 CTGEX2(1)