1CUNMR3(1)                LAPACK routine (version 3.1)                CUNMR3(1)
2
3
4

NAME

6       CUNMR3 - the general complex m by n matrix C with   Q * C if SIDE = 'L'
7       and TRANS = 'N', or   Q'* C if SIDE = 'L' and TRANS = 'C', or   C  *  Q
8       if  SIDE  =  'R' and TRANS = 'N', or   C * Q' if SIDE = 'R' and TRANS =
9       'C',
10

SYNOPSIS

12       SUBROUTINE CUNMR3( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,  WORK,
13                          INFO )
14
15           CHARACTER      SIDE, TRANS
16
17           INTEGER        INFO, K, L, LDA, LDC, M, N
18
19           COMPLEX        A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
20

PURPOSE

22       CUNMR3 overwrites the general complex m by n matrix C with
23
24       where Q is a complex unitary matrix defined as the product of k elemen‐
25       tary reflectors
26
27             Q = H(1) H(2) . . . H(k)
28
29       as returned by CTZRZF. Q is of order m if SIDE = 'L' and of order n  if
30       SIDE = 'R'.
31
32

ARGUMENTS

34       SIDE    (input) CHARACTER*1
35               = 'L': apply Q or Q' from the Left
36               = 'R': apply Q or Q' from the Right
37
38       TRANS   (input) CHARACTER*1
39               = 'N': apply Q  (No transpose)
40               = 'C': apply Q' (Conjugate transpose)
41
42       M       (input) INTEGER
43               The number of rows of the matrix C. M >= 0.
44
45       N       (input) INTEGER
46               The number of columns of the matrix C. N >= 0.
47
48       K       (input) INTEGER
49               The  number  of elementary reflectors whose product defines the
50               matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
51               0.
52
53       L       (input) INTEGER
54               The number of columns of the matrix A containing the meaningful
55               part of the Householder reflectors.  If SIDE = 'L', M >=  L  >=
56               0, if SIDE = 'R', N >= L >= 0.
57
58       A       (input) COMPLEX array, dimension
59               (LDA,M)  if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must
60               contain the vector which defines the elementary reflector H(i),
61               for  i = 1,2,...,k, as returned by CTZRZF in the last k rows of
62               its array argument  A.   A  is  modified  by  the  routine  but
63               restored on exit.
64
65       LDA     (input) INTEGER
66               The leading dimension of the array A. LDA >= max(1,K).
67
68       TAU     (input) COMPLEX array, dimension (K)
69               TAU(i) must contain the scalar factor of the elementary reflec‐
70               tor H(i), as returned by CTZRZF.
71
72       C       (input/output) COMPLEX array, dimension (LDC,N)
73               On entry, the m-by-n matrix C.  On exit, C  is  overwritten  by
74               Q*C or Q'*C or C*Q' or C*Q.
75
76       LDC     (input) INTEGER
77               The leading dimension of the array C. LDC >= max(1,M).
78
79       WORK    (workspace) COMPLEX array, dimension
80               (N) if SIDE = 'L', (M) if SIDE = 'R'
81
82       INFO    (output) INTEGER
83               = 0: successful exit
84               < 0: if INFO = -i, the i-th argument had an illegal value
85

FURTHER DETAILS

87       Based on contributions by
88         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
89
90
91
92
93 LAPACK routine (version 3.1)    November 2006                       CUNMR3(1)
Impressum