1CUNMRQ(1) LAPACK routine (version 3.1) CUNMRQ(1)
2
3
4
6 CUNMRQ - the general complex M-by-N matrix C with SIDE = 'L' SIDE =
7 'R' TRANS = 'N'
8
10 SUBROUTINE CUNMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
11 LWORK, INFO )
12
13 CHARACTER SIDE, TRANS
14
15 INTEGER INFO, K, LDA, LDC, LWORK, M, N
16
17 COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
18
20 CUNMRQ overwrites the general complex M-by-N matrix C with TRANS = 'C':
21 Q**H * C C * Q**H
22
23 where Q is a complex unitary matrix defined as the product of k elemen‐
24 tary reflectors
25
26 Q = H(1)' H(2)' . . . H(k)'
27
28 as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N if
29 SIDE = 'R'.
30
31
33 SIDE (input) CHARACTER*1
34 = 'L': apply Q or Q**H from the Left;
35 = 'R': apply Q or Q**H from the Right.
36
37 TRANS (input) CHARACTER*1
38 = 'N': No transpose, apply Q;
39 = 'C': Transpose, apply Q**H.
40
41 M (input) INTEGER
42 The number of rows of the matrix C. M >= 0.
43
44 N (input) INTEGER
45 The number of columns of the matrix C. N >= 0.
46
47 K (input) INTEGER
48 The number of elementary reflectors whose product defines the
49 matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
50 0.
51
52 A (input) COMPLEX array, dimension
53 (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must
54 contain the vector which defines the elementary reflector H(i),
55 for i = 1,2,...,k, as returned by CGERQF in the last k rows of
56 its array argument A. A is modified by the routine but
57 restored on exit.
58
59 LDA (input) INTEGER
60 The leading dimension of the array A. LDA >= max(1,K).
61
62 TAU (input) COMPLEX array, dimension (K)
63 TAU(i) must contain the scalar factor of the elementary reflec‐
64 tor H(i), as returned by CGERQF.
65
66 C (input/output) COMPLEX array, dimension (LDC,N)
67 On entry, the M-by-N matrix C. On exit, C is overwritten by
68 Q*C or Q**H*C or C*Q**H or C*Q.
69
70 LDC (input) INTEGER
71 The leading dimension of the array C. LDC >= max(1,M).
72
73 WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
74 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
75
76 LWORK (input) INTEGER
77 The dimension of the array WORK. If SIDE = 'L', LWORK >=
78 max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum per‐
79 formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE
80 = 'R', where NB is the optimal blocksize.
81
82 If LWORK = -1, then a workspace query is assumed; the routine
83 only calculates the optimal size of the WORK array, returns
84 this value as the first entry of the WORK array, and no error
85 message related to LWORK is issued by XERBLA.
86
87 INFO (output) INTEGER
88 = 0: successful exit
89 < 0: if INFO = -i, the i-th argument had an illegal value
90
91
92
93 LAPACK routine (version 3.1) November 2006 CUNMRQ(1)