1DGELQF(1) LAPACK routine (version 3.1) DGELQF(1)
2
3
4
6 DGELQF - an LQ factorization of a real M-by-N matrix A
7
9 SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
10
11 INTEGER INFO, LDA, LWORK, M, N
12
13 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
14
16 DGELQF computes an LQ factorization of a real M-by-N matrix A: A = L *
17 Q.
18
19
21 M (input) INTEGER
22 The number of rows of the matrix A. M >= 0.
23
24 N (input) INTEGER
25 The number of columns of the matrix A. N >= 0.
26
27 A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
28 On entry, the M-by-N matrix A. On exit, the elements on and
29 below the diagonal of the array contain the m-by-min(m,n) lower
30 trapezoidal matrix L (L is lower triangular if m <= n); the
31 elements above the diagonal, with the array TAU, represent the
32 orthogonal matrix Q as a product of elementary reflectors (see
33 Further Details). LDA (input) INTEGER The leading dimen‐
34 sion of the array A. LDA >= max(1,M).
35
36 TAU (output) DOUBLE PRECISION array, dimension (min(M,N))
37 The scalar factors of the elementary reflectors (see Further
38 Details).
39
40 WORK (workspace/output) DOUBLE PRECISION array, dimension
41 (MAX(1,LWORK))
42 On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
43
44 LWORK (input) INTEGER
45 The dimension of the array WORK. LWORK >= max(1,M). For opti‐
46 mum performance LWORK >= M*NB, where NB is the optimal block‐
47 size.
48
49 If LWORK = -1, then a workspace query is assumed; the routine
50 only calculates the optimal size of the WORK array, returns
51 this value as the first entry of the WORK array, and no error
52 message related to LWORK is issued by XERBLA.
53
54 INFO (output) INTEGER
55 = 0: successful exit
56 < 0: if INFO = -i, the i-th argument had an illegal value
57
59 The matrix Q is represented as a product of elementary reflectors
60
61 Q = H(k) . . . H(2) H(1), where k = min(m,n).
62
63 Each H(i) has the form
64
65 H(i) = I - tau * v * v'
66
67 where tau is a real scalar, and v is a real vector with
68 v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),
69 and tau in TAU(i).
70
71
72
73
74 LAPACK routine (version 3.1) November 2006 DGELQF(1)