1DGERFS(1)                LAPACK routine (version 3.1)                DGERFS(1)
2
3
4

NAME

6       DGERFS - the computed solution to a system of linear equations and pro‐
7       vides error bounds and backward error estimates for the solution
8

SYNOPSIS

10       SUBROUTINE DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B,  LDB,  X,
11                          LDX, FERR, BERR, WORK, IWORK, INFO )
12
13           CHARACTER      TRANS
14
15           INTEGER        INFO, LDA, LDAF, LDB, LDX, N, NRHS
16
17           INTEGER        IPIV( * ), IWORK( * )
18
19           DOUBLE         PRECISION  A(  LDA, * ), AF( LDAF, * ), B( LDB, * ),
20                          BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
21

PURPOSE

23       DGERFS improves the computed solution to a system of  linear  equations
24       and  provides  error  bounds and backward error estimates for the solu‐
25       tion.
26
27

ARGUMENTS

29       TRANS   (input) CHARACTER*1
30               Specifies the form of the system of equations:
31               = 'N':  A * X = B     (No transpose)
32               = 'T':  A**T * X = B  (Transpose)
33               = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
34
35       N       (input) INTEGER
36               The order of the matrix A.  N >= 0.
37
38       NRHS    (input) INTEGER
39               The number of right hand sides, i.e., the number of columns  of
40               the matrices B and X.  NRHS >= 0.
41
42       A       (input) DOUBLE PRECISION array, dimension (LDA,N)
43               The original N-by-N matrix A.
44
45       LDA     (input) INTEGER
46               The leading dimension of the array A.  LDA >= max(1,N).
47
48       AF      (input) DOUBLE PRECISION array, dimension (LDAF,N)
49               The  factors  L  and U from the factorization A = P*L*U as com‐
50               puted by DGETRF.
51
52       LDAF    (input) INTEGER
53               The leading dimension of the array AF.  LDAF >= max(1,N).
54
55       IPIV    (input) INTEGER array, dimension (N)
56               The pivot indices from DGETRF; for 1<=i<=N, row i of the matrix
57               was interchanged with row IPIV(i).
58
59       B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
60               The right hand side matrix B.
61
62       LDB     (input) INTEGER
63               The leading dimension of the array B.  LDB >= max(1,N).
64
65       X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
66               On  entry,  the  solution  matrix X, as computed by DGETRS.  On
67               exit, the improved solution matrix X.
68
69       LDX     (input) INTEGER
70               The leading dimension of the array X.  LDX >= max(1,N).
71
72       FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
73               The estimated forward error bound for each solution vector X(j)
74               (the  j-th  column  of the solution matrix X).  If XTRUE is the
75               true solution corresponding to X(j), FERR(j)  is  an  estimated
76               upper bound for the magnitude of the largest element in (X(j) -
77               XTRUE) divided by the magnitude of the largest element in X(j).
78               The  estimate  is as reliable as the estimate for RCOND, and is
79               almost always a slight overestimate of the true error.
80
81       BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
82               The componentwise relative backward error of each solution vec‐
83               tor  X(j) (i.e., the smallest relative change in any element of
84               A or B that makes X(j) an exact solution).
85
86       WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
87
88       IWORK   (workspace) INTEGER array, dimension (N)
89
90       INFO    (output) INTEGER
91               = 0:  successful exit
92               < 0:  if INFO = -i, the i-th argument had an illegal value
93

PARAMETERS

95       ITMAX is the maximum number of steps of iterative refinement.
96
97
98
99 LAPACK routine (version 3.1)    November 2006                       DGERFS(1)
Impressum