1DGTSV(1) LAPACK routine (version 3.1) DGTSV(1)
2
3
4
6 DGTSV - the equation A*X = B,
7
9 SUBROUTINE DGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
10
11 INTEGER INFO, LDB, N, NRHS
12
13 DOUBLE PRECISION B( LDB, * ), D( * ), DL( * ), DU( * )
14
16 DGTSV solves the equation
17
18 where A is an n by n tridiagonal matrix, by Gaussian elimination with
19 partial pivoting.
20
21 Note that the equation A'*X = B may be solved by interchanging the
22 order of the arguments DU and DL.
23
24
26 N (input) INTEGER
27 The order of the matrix A. N >= 0.
28
29 NRHS (input) INTEGER
30 The number of right hand sides, i.e., the number of columns of
31 the matrix B. NRHS >= 0.
32
33 DL (input/output) DOUBLE PRECISION array, dimension (N-1)
34 On entry, DL must contain the (n-1) sub-diagonal elements of A.
35
36 On exit, DL is overwritten by the (n-2) elements of the second
37 super-diagonal of the upper triangular matrix U from the LU
38 factorization of A, in DL(1), ..., DL(n-2).
39
40 D (input/output) DOUBLE PRECISION array, dimension (N)
41 On entry, D must contain the diagonal elements of A.
42
43 On exit, D is overwritten by the n diagonal elements of U.
44
45 DU (input/output) DOUBLE PRECISION array, dimension (N-1)
46 On entry, DU must contain the (n-1) super-diagonal elements of
47 A.
48
49 On exit, DU is overwritten by the (n-1) elements of the first
50 super-diagonal of U.
51
52 B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
53 On entry, the N by NRHS matrix of right hand side matrix B. On
54 exit, if INFO = 0, the N by NRHS solution matrix X.
55
56 LDB (input) INTEGER
57 The leading dimension of the array B. LDB >= max(1,N).
58
59 INFO (output) INTEGER
60 = 0: successful exit
61 < 0: if INFO = -i, the i-th argument had an illegal value
62 > 0: if INFO = i, U(i,i) is exactly zero, and the solution has
63 not been computed. The factorization has not been completed
64 unless i = N.
65
66
67
68 LAPACK routine (version 3.1) November 2006 DGTSV(1)