1DLAED5(1) LAPACK routine (version 3.1) DLAED5(1)
2
3
4
6 DLAED5 - compute the I-th eigenvalue of a symmetric rank-one modifica‐
7 tion of a 2-by-2 diagonal matrix diag( D ) + RHO The diagonal ele‐
8 ments in the array D are assumed to satisfy D(i) < D(j) for i < j
9
11 SUBROUTINE DLAED5( I, D, Z, DELTA, RHO, DLAM )
12
13 INTEGER I
14
15 DOUBLE PRECISION DLAM, RHO
16
17 DOUBLE PRECISION D( 2 ), DELTA( 2 ), Z( 2 )
18
20 This subroutine computes the I-th eigenvalue of a symmetric rank-one
21 modification of a 2-by-2 diagonal matrix
22
23 We also assume RHO > 0 and that the Euclidean norm of the vector Z is
24 one.
25
26
28 I (input) INTEGER
29 The index of the eigenvalue to be computed. I = 1 or I = 2.
30
31 D (input) DOUBLE PRECISION array, dimension (2)
32 The original eigenvalues. We assume D(1) < D(2).
33
34 Z (input) DOUBLE PRECISION array, dimension (2)
35 The components of the updating vector.
36
37 DELTA (output) DOUBLE PRECISION array, dimension (2)
38 The vector DELTA contains the information necessary to construct
39 the eigenvectors.
40
41 RHO (input) DOUBLE PRECISION
42 The scalar in the symmetric updating formula.
43
44 DLAM (output) DOUBLE PRECISION
45 The computed lambda_I, the I-th updated eigenvalue.
46
48 Based on contributions by
49 Ren-Cang Li, Computer Science Division, University of California
50 at Berkeley, USA
51
52
53
54
55 LAPACK routine (version 3.1) November 2006 DLAED5(1)