1DLAGS2(1) LAPACK auxiliary routine (version 3.1) DLAGS2(1)
2
3
4
6 DLAGS2 - 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER )
7 then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q
8 = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then
9 U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*(
10 B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A
11 and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ
12 SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose
13 of Z
14
16 SUBROUTINE DLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
17 CSQ, SNQ )
18
19 LOGICAL UPPER
20
21 DOUBLE PRECISION A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV,
22 SNQ, SNU, SNV
23
25 DLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if (
26 UPPER ) then
27
28
29
31 UPPER (input) LOGICAL
32 = .TRUE.: the input matrices A and B are upper triangular.
33 = .FALSE.: the input matrices A and B are lower triangular.
34
35 A1 (input) DOUBLE PRECISION
36 A2 (input) DOUBLE PRECISION A3 (input) DOUBLE PRECI‐
37 SION On entry, A1, A2 and A3 are elements of the input 2-by-2
38 upper (lower) triangular matrix A.
39
40 B1 (input) DOUBLE PRECISION
41 B2 (input) DOUBLE PRECISION B3 (input) DOUBLE PRECI‐
42 SION On entry, B1, B2 and B3 are elements of the input 2-by-2
43 upper (lower) triangular matrix B.
44
45 CSU (output) DOUBLE PRECISION
46 SNU (output) DOUBLE PRECISION The desired orthogonal matrix
47 U.
48
49 CSV (output) DOUBLE PRECISION
50 SNV (output) DOUBLE PRECISION The desired orthogonal matrix
51 V.
52
53 CSQ (output) DOUBLE PRECISION
54 SNQ (output) DOUBLE PRECISION The desired orthogonal matrix
55 Q.
56
57
58
59 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 DLAGS2(1)