1DLALS0(1)                LAPACK routine (version 3.1)                DLALS0(1)
2
3
4

NAME

6       DLALS0  -  back the multiplying factors of either the left or the right
7       singular vector matrix of a diagonal matrix appended by a  row  to  the
8       right hand side matrix B in solving the least squares problem using the
9       divide-and-conquer SVD approach
10

SYNOPSIS

12       SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,  PERM,
13                          GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, POLES, DIFL,
14                          DIFR, Z, K, C, S, WORK, INFO )
15
16           INTEGER        GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,  LDGNUM,
17                          NL, NR, NRHS, SQRE
18
19           DOUBLE         PRECISION C, S
20
21           INTEGER        GIVCOL( LDGCOL, * ), PERM( * )
22
23           DOUBLE         PRECISION  B(  LDB,  *  ), BX( LDBX, * ), DIFL( * ),
24                          DIFR( LDGNUM, *  ),  GIVNUM(  LDGNUM,  *  ),  POLES(
25                          LDGNUM, * ), WORK( * ), Z( * )
26

PURPOSE

28       DLALS0  applies  back the multiplying factors of either the left or the
29       right singular vector matrix of a diagonal matrix appended by a row  to
30       the right hand side matrix B in solving the least squares problem using
31       the divide-and-conquer SVD approach.
32
33       For the left singular vector matrix, three types of orthogonal matrices
34       are involved:
35
36       (1L) Givens rotations: the number of such rotations is GIVPTR; the
37            pairs of columns/rows they were applied to are stored in GIVCOL;
38            and the C- and S-values of these rotations are stored in GIVNUM.
39
40       (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
41            row, and for J=2:N, PERM(J)-th row of B is to be moved to the
42            J-th row.
43
44       (3L) The left singular vector matrix of the remaining matrix.
45
46       For the right singular vector matrix, four types of orthogonal matrices
47       are involved:
48
49       (1R) The right singular vector matrix of the remaining matrix.
50
51       (2R) If SQRE = 1, one extra Givens rotation to generate the right
52            null space.
53
54       (3R) The inverse transformation of (2L).
55
56       (4R) The inverse transformation of (1L).
57
58

ARGUMENTS

60       ICOMPQ (input) INTEGER Specifies whether singular  vectors  are  to  be
61       computed in factored form:
62       = 0: Left singular vector matrix.
63       = 1: Right singular vector matrix.
64
65       NL     (input) INTEGER
66              The row dimension of the upper block. NL >= 1.
67
68       NR     (input) INTEGER
69              The row dimension of the lower block. NR >= 1.
70
71       SQRE   (input) INTEGER
72              = 0: the lower block is an NR-by-NR square matrix.
73              = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
74
75              The  bidiagonal  matrix  has  row dimension N = NL + NR + 1, and
76              column dimension M = N + SQRE.
77
78       NRHS   (input) INTEGER
79              The number of columns of B and BX. NRHS must be at least 1.
80
81       B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS )
82              On input, B contains the right hand sides of the  least  squares
83              problem  in rows 1 through M. On output, B contains the solution
84              X in rows 1 through N.
85
86       LDB    (input) INTEGER
87              The leading dimension of B. LDB must be at least max(1,MAX( M, N
88              ) ).
89
90       BX     (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS )
91
92       LDBX   (input) INTEGER
93              The leading dimension of BX.
94
95       PERM   (input) INTEGER array, dimension ( N )
96              The permutations (from deflation and sorting) applied to the two
97              blocks.
98
99              GIVPTR (input) INTEGER The number of Givens rotations which took
100              place in this subproblem.
101
102              GIVCOL  (input) INTEGER array, dimension ( LDGCOL, 2 ) Each pair
103              of numbers indicates a pair of rows/columns involved in a Givens
104              rotation.
105
106              LDGCOL  (input) INTEGER The leading dimension of GIVCOL, must be
107              at least N.
108
109              GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM,  2  )
110              Each number indicates the C or S value used in the corresponding
111              Givens rotation.
112
113              LDGNUM (input) INTEGER The leading  dimension  of  arrays  DIFR,
114              POLES and GIVNUM, must be at least K.
115
116       POLES  (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
117              On  entry,  POLES(1:K,  1)  contains  the  new  singular  values
118              obtained from solving the secular equation, and POLES(1:K, 2) is
119              an array containing the poles in the secular equation.
120
121       DIFL   (input) DOUBLE PRECISION array, dimension ( K ).
122              On  entry,  DIFL(I)  is the distance between I-th updated (unde‐
123              flated) singular value and the I-th  (undeflated)  old  singular
124              value.
125
126       DIFR   (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ).
127              On entry, DIFR(I, 1) contains the distances between I-th updated
128              (undeflated) singular value and the I+1-th (undeflated) old sin‐
129              gular value. And DIFR(I, 2) is the normalizing factor for the I-
130              th right singular vector.
131
132       Z      (input) DOUBLE PRECISION array, dimension ( K )
133              Contain the components of the  deflation-adjusted  updating  row
134              vector.
135
136       K      (input) INTEGER
137              Contains  the  dimension of the non-deflated matrix, This is the
138              order of the related secular equation. 1 <= K <=N.
139
140       C      (input) DOUBLE PRECISION
141              C contains garbage if SQRE =0 and the C-value of a Givens  rota‐
142              tion related to the right null space if SQRE = 1.
143
144       S      (input) DOUBLE PRECISION
145              S  contains garbage if SQRE =0 and the S-value of a Givens rota‐
146              tion related to the right null space if SQRE = 1.
147
148       WORK   (workspace) DOUBLE PRECISION array, dimension ( K )
149
150       INFO   (output) INTEGER
151              = 0:  successful exit.
152              < 0:  if INFO = -i, the i-th argument had an illegal value.
153

FURTHER DETAILS

155       Based on contributions by
156          Ming Gu and Ren-Cang Li, Computer Science Division, University of
157            California at Berkeley, USA
158          Osni Marques, LBNL/NERSC, USA
159
160
161
162
163 LAPACK routine (version 3.1)    November 2006                       DLALS0(1)
Impressum