1DLARFG(1)           LAPACK auxiliary routine (version 3.1)           DLARFG(1)
2
3
4

NAME

6       DLARFG  -  a  real elementary reflector H of order n, such that   H * (
7       alpha ) = ( beta ), H' * H = I
8

SYNOPSIS

10       SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
11
12           INTEGER        INCX, N
13
14           DOUBLE         PRECISION ALPHA, TAU
15
16           DOUBLE         PRECISION X( * )
17

PURPOSE

19       DLARFG generates a real elementary reflector H of order n, such that
20                 (   x   )   (   0  )
21
22       where alpha and beta are scalars, and x is an (n-1)-element  real  vec‐
23       tor. H is represented in the form
24
25             H = I - tau * ( 1 ) * ( 1 v' ) ,
26                           ( v )
27
28       where tau is a real scalar and v is a real (n-1)-element
29       vector.
30
31       If  the  elements  of x are all zero, then tau = 0 and H is taken to be
32       the unit matrix.
33
34       Otherwise  1 <= tau <= 2.
35
36

ARGUMENTS

38       N       (input) INTEGER
39               The order of the elementary reflector.
40
41       ALPHA   (input/output) DOUBLE PRECISION
42               On entry, the value alpha.  On exit, it is overwritten with the
43               value beta.
44
45       X       (input/output) DOUBLE PRECISION array, dimension
46               (1+(N-2)*abs(INCX))  On  entry,  the  vector x.  On exit, it is
47               overwritten with the vector v.
48
49       INCX    (input) INTEGER
50               The increment between elements of X. INCX > 0.
51
52       TAU     (output) DOUBLE PRECISION
53               The value tau.
54
55
56
57 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLARFG(1)
Impressum