1DLARRE(1)           LAPACK auxiliary routine (version 3.1)           DLARRE(1)
2
3
4

NAME

6       DLARRE  - the desired eigenvalues of a given real symmetric tridiagonal
7       matrix T, DLARRE sets any "small" off-diagonal elements  to  zero,  and
8       for  each unreduced block T_i, it finds (a) a suitable shift at one end
9       of the block's spectrum,
10

SYNOPSIS

12       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E,  E2,  RTOL1,  RTOL2,
13                          SPLTOL,  NSPLIT,  ISPLIT,  M, W, WERR, WGAP, IBLOCK,
14                          INDEXW, GERS, PIVMIN, WORK, IWORK, INFO )
15
16           IMPLICIT       NONE
17
18           CHARACTER      RANGE
19
20           INTEGER        IL, INFO, IU, M, N, NSPLIT
21
22           DOUBLE         PRECISION PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
23
24           INTEGER        IBLOCK( * ), ISPLIT( * ), IWORK( * ), INDEXW( * )
25
26           DOUBLE         PRECISION D( * ), E( * ), E2( * ), GERS( * ),  W(  *
27                          ),WERR( * ), WGAP( * ), WORK( * )
28

PURPOSE

30       To  find  the desired eigenvalues of a given real symmetric tridiagonal
31       matrix T, DLARRE sets any "small" off-diagonal elements  to  zero,  and
32       for  each unreduced block T_i, it finds (a) a suitable shift at one end
33       of the block's spectrum, (b) the base representation, T_i - sigma_i I =
34       L_i D_i L_i^T, and (c) eigenvalues of each L_i D_i L_i^T.
35       The  representations  and  eigenvalues found are then used by DSTEMR to
36       compute the eigenvectors of T.
37       The accuracy varies depending on whether bisection is used  to  find  a
38       few  eigenvalues  or  the dqds algorithm (subroutine DLASQ2) to conpute
39       all and then discard any unwanted one.
40       As an added benefit, DLARRE also outputs the n
41       Gerschgorin intervals for the matrices L_i D_i L_i^T.
42
43

ARGUMENTS

45       RANGE   (input) CHARACTER
46               = 'A': ("All")   all eigenvalues will be found.
47               = 'V': ("Value") all eigenvalues in the half-open interval (VL,
48               VU]  will  be  found.  = 'I': ("Index") the IL-th through IU-th
49               eigenvalues (of the entire matrix) will be found.
50
51       N       (input) INTEGER
52               The order of the matrix. N > 0.
53
54       VL      (input/output) DOUBLE PRECISION
55               VU      (input/output) DOUBLE PRECISION If RANGE='V', the lower
56               and upper bounds for the eigenvalues.  Eigenvalues less than or
57               equal to VL, or greater than VU, will not be  returned.   VL  <
58               VU.   If  RANGE='I'  or  ='A',  DLARRE  computes  bounds on the
59               desired part of the spectrum.
60
61       IL      (input) INTEGER
62               IU      (input) INTEGER If RANGE='I', the indices (in ascending
63               order)  of the smallest and largest eigenvalues to be returned.
64               1 <= IL <= IU <= N.
65
66       D       (input/output) DOUBLE PRECISION array, dimension (N)
67               On entry, the N diagonal elements of the tridiagonal matrix  T.
68               On exit, the N diagonal elements of the diagonal matrices D_i.
69
70       E       (input/output) DOUBLE PRECISION array, dimension (N)
71               On  entry, the first (N-1) entries contain the subdiagonal ele‐
72               ments of the tridiagonal matrix T; E(N) need not  be  set.   On
73               exit,  E contains the subdiagonal elements of the unit bidiago‐
74               nal matrices L_i. The entries E( ISPLIT( I  )  ),  1  <=  I  <=
75               NSPLIT, contain the base points sigma_i on output.
76
77       E2      (input/output) DOUBLE PRECISION array, dimension (N)
78               On  entry,  the  first (N-1) entries contain the SQUARES of the
79               subdiagonal elements of the tridiagonal matrix  T;  E2(N)  need
80               not  be set.  On exit, the entries E2( ISPLIT( I ) ), 1 <= I <=
81               NSPLIT, have been set to zero
82
83       RTOL1   (input) DOUBLE PRECISION
84               RTOL2   (input)  DOUBLE  PRECISION  Parameters  for  bisection.
85               RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
86
87               SPLTOL (input) DOUBLE PRECISION The threshold for splitting.
88
89       NSPLIT  (output) INTEGER
90               The number of blocks T splits into. 1 <= NSPLIT <= N.
91
92       ISPLIT  (output) INTEGER array, dimension (N)
93               The  splitting  points,  at which T breaks up into blocks.  The
94               first block consists of rows/columns 1 to ISPLIT(1), the second
95               of  rows/columns  ISPLIT(1)+1  through ISPLIT(2), etc., and the
96               NSPLIT-th consists of rows/columns  ISPLIT(NSPLIT-1)+1  through
97               ISPLIT(NSPLIT)=N.
98
99       M       (output) INTEGER
100               The total number of eigenvalues (of all L_i D_i L_i^T) found.
101
102       W       (output) DOUBLE PRECISION array, dimension (N)
103               The  first  M elements contain the eigenvalues. The eigenvalues
104               of each of the blocks, L_i D_i L_i^T, are sorted  in  ascending
105               order   (   DLARRE  may  use  the  remaining  N-M  elements  as
106               workspace).
107
108       WERR    (output) DOUBLE PRECISION array, dimension (N)
109               The error bound on the corresponding eigenvalue in W.
110
111       WGAP    (output) DOUBLE PRECISION array, dimension (N)
112               The separation from the right neighbor eigenvalue  in  W.   The
113               gap  is  only with respect to the eigenvalues of the same block
114               as each block has its own representation tree.   Exception:  at
115               the right end of a block we store the left gap
116
117       IBLOCK  (output) INTEGER array, dimension (N)
118               The  indices  of  the  blocks (submatrices) associated with the
119               corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue  W(i)
120               belongs  to the first block from the top, =2 if W(i) belongs to
121               the second block, etc.
122
123       INDEXW  (output) INTEGER array, dimension (N)
124               The indices of the eigenvalues within each  block  (submatrix);
125               for  example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the i-th
126               eigenvalue W(i) is the 10-th eigenvalue in block 2
127
128       GERS    (output) DOUBLE PRECISION array, dimension (2*N)
129               The N Gerschgorin intervals (the i-th Gerschgorin  interval  is
130               (GERS(2*i-1), GERS(2*i)).
131
132       PIVMIN  (output) DOUBLE PRECISION
133               The minimum pivot in the Sturm sequence for T.
134
135       WORK    (workspace) DOUBLE PRECISION array, dimension (6*N)
136               Workspace.
137
138       IWORK   (workspace) INTEGER array, dimension (5*N)
139               Workspace.
140
141       INFO    (output) INTEGER
142               = 0:  successful exit
143               > 0:  A problem occured in DLARRE.
144               <  0:  One of the called subroutines signaled an internal prob‐
145               lem.  Needs inspection of the corresponding parameter IINFO for
146               further information.
147
148       =-1:  Problem in DLARRD.
149             = 2:  No base representation could be found in MAXTRY iterations.
150             Increasing MAXTRY and recompilation  might  be  a  remedy.   =-3:
151             Problem  in DLARRB when computing the refined root representation
152             for DLASQ2.  =-4:  Problem in DLARRB when preforming bisection on
153             the desired part of the spectrum.  =-5:  Problem in DLASQ2.
154             =-6:  Problem in DLASQ2.
155
156             Further  Details element growth and consequently define all their
157             eigenvalues to high relative accuracy.  ===============
158
159             Based on contributions by Beresford Parlett, University of  Cali‐
160             fornia,  Berkeley,  USA  Jim  Demmel,  University  of California,
161             Berkeley, USA Inderjit Dhillon, University of Texas, Austin,  USA
162             Osni Marques, LBNL/NERSC, USA Christof Voemel, University of Cal‐
163             ifornia, Berkeley, USA
164
165
166
167 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLARRE(1)
Impressum