1DLARRK(1)           LAPACK auxiliary routine (version 3.1)           DLARRK(1)
2
3
4

NAME

6       DLARRK - one eigenvalue of a symmetric tridiagonal matrix T to suitable
7       accuracy
8

SYNOPSIS

10       SUBROUTINE DLARRK( N, IW, GL, GU, D, E2, PIVMIN, RELTOL, W, WERR, INFO)
11
12           IMPLICIT       NONE
13
14           INTEGER        INFO, IW, N
15
16           DOUBLE         PRECISION PIVMIN, RELTOL, GL, GU, W, WERR
17
18           DOUBLE         PRECISION D( * ), E2( * )
19

PURPOSE

21       DLARRK computes one eigenvalue of a symmetric tridiagonal matrix  T  to
22       suitable accuracy. This is an auxiliary code to be called from DSTEMR.
23
24       To avoid overflow, the matrix must be scaled so that its
25       largest element is no greater than overflow**(1/2) *
26       underflow**(1/4) in absolute value, and for greatest
27       accuracy, it should not be much smaller than that.
28
29       See  W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal Matrix",
30       Report CS41, Computer Science Dept., Stanford
31       University, July 21, 1966.
32
33

ARGUMENTS

35       N       (input) INTEGER
36               The order of the tridiagonal matrix T.  N >= 0.
37
38       IW      (input) INTEGER
39               The index of the eigenvalues to be returned.
40
41       GL      (input) DOUBLE PRECISION
42               GU      (input) DOUBLE PRECISION An upper and a lower bound  on
43               the eigenvalue.
44
45       D       (input) DOUBLE PRECISION array, dimension (N)
46               The n diagonal elements of the tridiagonal matrix T.
47
48       E2      (input) DOUBLE PRECISION array, dimension (N-1)
49               The  (n-1)  squared  off-diagonal  elements  of the tridiagonal
50               matrix T.
51
52       PIVMIN  (input) DOUBLE PRECISION
53               The minimum pivot allowed in the Sturm sequence for T.
54
55       RELTOL  (input) DOUBLE PRECISION
56               The minimum relative width of an interval.  When an interval is
57               narrower  than RELTOL times the larger (in magnitude) endpoint,
58               then it is considered to  be  sufficiently  small,  i.e.,  con‐
59               verged.   Note:  this  should  always be at least radix*machine
60               epsilon.
61
62       W       (output) DOUBLE PRECISION
63
64       WERR    (output) DOUBLE PRECISION
65               The error bound on the corresponding  eigenvalue  approximation
66               in W.
67
68       INFO    (output) INTEGER
69               = 0:       Eigenvalue converged
70               = -1:      Eigenvalue did NOT converge
71

PARAMETERS

73       FUDGE   DOUBLE PRECISION, default = 2
74               A "fudge factor" to widen the Gershgorin intervals.
75
76
77
78 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLARRK(1)
Impressum