1DLARZB(1)                LAPACK routine (version 3.1)                DLARZB(1)
2
3
4

NAME

6       DLARZB  - a real block reflector H or its transpose H**T to a real dis‐
7       tributed M-by-N C from the left or the right
8

SYNOPSIS

10       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V, LDV,  T,
11                          LDT, C, LDC, WORK, LDWORK )
12
13           CHARACTER      DIRECT, SIDE, STOREV, TRANS
14
15           INTEGER        K, L, LDC, LDT, LDV, LDWORK, M, N
16
17           DOUBLE         PRECISION  C(  LDC,  *  ), T( LDT, * ), V( LDV, * ),
18                          WORK( LDWORK, * )
19

PURPOSE

21       DLARZB applies a real block reflector H or its transpose H**T to a real
22       distributed M-by-N  C from the left or the right.
23
24       Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
25
26

ARGUMENTS

28       SIDE    (input) CHARACTER*1
29               = 'L': apply H or H' from the Left
30               = 'R': apply H or H' from the Right
31
32       TRANS   (input) CHARACTER*1
33               = 'N': apply H (No transpose)
34               = 'C': apply H' (Transpose)
35
36       DIRECT  (input) CHARACTER*1
37               Indicates  how H is formed from a product of elementary reflec‐
38               tors = 'F': H = H(1) H(2) . . . H(k)  (Forward,  not  supported
39               yet)
40               = 'B': H = H(k) . . . H(2) H(1) (Backward)
41
42       STOREV  (input) CHARACTER*1
43               Indicates  how  the vectors which define the elementary reflec‐
44               tors are stored:
45               = 'C': Columnwise                        (not supported yet)
46               = 'R': Rowwise
47
48       M       (input) INTEGER
49               The number of rows of the matrix C.
50
51       N       (input) INTEGER
52               The number of columns of the matrix C.
53
54       K       (input) INTEGER
55               The order of the matrix T (= the number of  elementary  reflec‐
56               tors whose product defines the block reflector).
57
58       L       (input) INTEGER
59               The number of columns of the matrix V containing the meaningful
60               part of the Householder reflectors.  If SIDE = 'L', M >=  L  >=
61               0, if SIDE = 'R', N >= L >= 0.
62
63       V       (input) DOUBLE PRECISION array, dimension (LDV,NV).
64               If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
65
66       LDV     (input) INTEGER
67               The  leading dimension of the array V.  If STOREV = 'C', LDV >=
68               L; if STOREV = 'R', LDV >= K.
69
70       T       (input) DOUBLE PRECISION array, dimension (LDT,K)
71               The triangular K-by-K matrix T in  the  representation  of  the
72               block reflector.
73
74       LDT     (input) INTEGER
75               The leading dimension of the array T. LDT >= K.
76
77       C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
78               On  entry,  the  M-by-N matrix C.  On exit, C is overwritten by
79               H*C or H'*C or C*H or C*H'.
80
81       LDC     (input) INTEGER
82               The leading dimension of the array C. LDC >= max(1,M).
83
84       WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,K)
85
86       LDWORK  (input) INTEGER
87               The leading dimension of the array WORK.  If SIDE = 'L', LDWORK
88               >= max(1,N); if SIDE = 'R', LDWORK >= max(1,M).
89

FURTHER DETAILS

91       Based on contributions by
92         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
93
94
95
96
97 LAPACK routine (version 3.1)    November 2006                       DLARZB(1)
Impressum