1DLARZT(1)                LAPACK routine (version 3.1)                DLARZT(1)
2
3
4

NAME

6       DLARZT - the triangular factor T of a real block reflector H of order >
7       n, which is defined as a product of k elementary reflectors
8

SYNOPSIS

10       SUBROUTINE DLARZT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
11
12           CHARACTER      DIRECT, STOREV
13
14           INTEGER        K, LDT, LDV, N
15
16           DOUBLE         PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
17

PURPOSE

19       DLARZT forms the triangular factor T of a real  block  reflector  H  of
20       order > n, which is defined as a product of k elementary reflectors.
21
22       If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
23
24       If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
25
26       If STOREV = 'C', the vector which defines the elementary reflector H(i)
27       is stored in the i-th column of the array V, and
28
29          H  =  I - V * T * V'
30
31       If STOREV = 'R', the vector which defines the elementary reflector H(i)
32       is stored in the i-th row of the array V, and
33
34          H  =  I - V' * T * V
35
36       Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
37
38

ARGUMENTS

40       DIRECT  (input) CHARACTER*1
41               Specifies the order in which the elementary reflectors are mul‐
42               tiplied to form the block reflector:
43               = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
44               = 'B': H = H(k) . . . H(2) H(1) (Backward)
45
46       STOREV  (input) CHARACTER*1
47               Specifies how the vectors which define the  elementary  reflec‐
48               tors are stored (see also Further Details):
49               = 'R': rowwise
50
51       N       (input) INTEGER
52               The order of the block reflector H. N >= 0.
53
54       K       (input) INTEGER
55               The  order  of the triangular factor T (= the number of elemen‐
56               tary reflectors). K >= 1.
57
58       V       (input/output) DOUBLE PRECISION array, dimension
59               (LDV,K) if STOREV = 'C' (LDV,N) if STOREV = 'R' The  matrix  V.
60               See further details.
61
62       LDV     (input) INTEGER
63               The  leading dimension of the array V.  If STOREV = 'C', LDV >=
64               max(1,N); if STOREV = 'R', LDV >= K.
65
66       TAU     (input) DOUBLE PRECISION array, dimension (K)
67               TAU(i) must contain the scalar factor of the elementary reflec‐
68               tor H(i).
69
70       T       (output) DOUBLE PRECISION array, dimension (LDT,K)
71               The  k  by  k  triangular  factor T of the block reflector.  If
72               DIRECT = 'F', T is upper triangular; if  DIRECT  =  'B',  T  is
73               lower triangular. The rest of the array is not used.
74
75       LDT     (input) INTEGER
76               The leading dimension of the array T. LDT >= K.
77

FURTHER DETAILS

79       Based on contributions by
80         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
81
82       The  shape  of the matrix V and the storage of the vectors which define
83       the H(i) is best illustrated by the following example with n = 5 and  k
84       =  3.  The  elements equal to 1 are not stored; the corresponding array
85       elements are modified but restored on exit. The rest of  the  array  is
86       not used.
87
88       DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R':
89
90                                                   ______V_____
91              (  v1 v2 v3 )                        /                   ( v1 v2
92       v3 )                      ( v1 v1 v1 v1 v1 . . . . 1 )
93          V = ( v1 v2 v3 )                      ( v2 v2 v2 v2 v2 . . . 1   )
94              ( v1 v2 v3 )                      ( v3 v3 v3 v3 v3 . . 1     )
95              ( v1 v2 v3 )
96                 .  .  .
97                 .  .  .
98                 1  .  .
99                    1  .
100                       1
101
102       DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R':
103
104                                                             ______V_____
105                 1                                                           /
106       .  1                           ( 1 . . . . v1 v1 v1 v1 v1 )
107                 .  .  1                        ( . 1 . . . v2 v2 v2 v2 v2 )
108                 .  .  .                        ( . . 1 . . v3 v3 v3 v3 v3 )
109                 .  .  .
110              ( v1 v2 v3 )
111              ( v1 v2 v3 )
112          V = ( v1 v2 v3 )
113              ( v1 v2 v3 )
114              ( v1 v2 v3 )
115
116
117
118
119 LAPACK routine (version 3.1)    November 2006                       DLARZT(1)
Impressum