1DLASD7(1)           LAPACK auxiliary routine (version 3.1)           DLASD7(1)
2
3
4

NAME

6       DLASD7  - the two sets of singular values together into a single sorted
7       set
8

SYNOPSIS

10       SUBROUTINE DLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, VLW,
11                          ALPHA,  BETA, DSIGMA, IDX, IDXP, IDXQ, PERM, GIVPTR,
12                          GIVCOL, LDGCOL, GIVNUM, LDGNUM, C, S, INFO )
13
14           INTEGER        GIVPTR, ICOMPQ, INFO, K,  LDGCOL,  LDGNUM,  NL,  NR,
15                          SQRE
16
17           DOUBLE         PRECISION ALPHA, BETA, C, S
18
19           INTEGER        GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), IDXQ( * ),
20                          PERM( * )
21
22           DOUBLE         PRECISION D( * ), DSIGMA( * ), GIVNUM( LDGNUM, *  ),
23                          VF(  * ), VFW( * ), VL( * ), VLW( * ), Z( * ), ZW( *
24                          )
25

PURPOSE

27       DLASD7 merges the two sets of singular values together  into  a  single
28       sorted set. Then it tries to deflate the size of the problem. There are
29       two ways in which deflation can occur:  when two or more singular  val‐
30       ues are close together or if there is a tiny entry in the Z vector. For
31       each such occurrence the order of the related secular equation  problem
32       is reduced by one.
33
34       DLASD7 is called from DLASD6.
35
36

ARGUMENTS

38       ICOMPQ  (input) INTEGER
39               Specifies  whether  singular vectors are to be computed in com‐
40               pact form, as follows:
41               = 0: Compute singular values only.
42               = 1: Compute singular vectors of  upper  bidiagonal  matrix  in
43               compact form.
44
45       NL     (input) INTEGER
46              The row dimension of the upper block. NL >= 1.
47
48       NR     (input) INTEGER
49              The row dimension of the lower block. NR >= 1.
50
51       SQRE   (input) INTEGER
52              = 0: the lower block is an NR-by-NR square matrix.
53              = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
54
55              The  bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE
56              >= N columns.
57
58       K      (output) INTEGER
59              Contains the dimension of the non-deflated matrix, this  is  the
60              order of the related secular equation. 1 <= K <=N.
61
62       D      (input/output) DOUBLE PRECISION array, dimension ( N )
63              On  entry  D contains the singular values of the two submatrices
64              to be combined. On exit D contains the  trailing  (N-K)  updated
65              singular values (those which were deflated) sorted into increas‐
66              ing order.
67
68       Z      (output) DOUBLE PRECISION array, dimension ( M )
69              On exit Z contains the updating row vector in the secular  equa‐
70              tion.
71
72       ZW     (workspace) DOUBLE PRECISION array, dimension ( M )
73              Workspace for Z.
74
75       VF     (input/output) DOUBLE PRECISION array, dimension ( M )
76              On entry, VF(1:NL+1) contains the first components of all
77              right  singular  vectors of the upper block; and VF(NL+2:M) con‐
78              tains the first components of all right singular vectors of  the
79              lower  block.  On  exit, VF contains the first components of all
80              right singular vectors of the bidiagonal matrix.
81
82       VFW    (workspace) DOUBLE PRECISION array, dimension ( M )
83              Workspace for VF.
84
85       VL     (input/output) DOUBLE PRECISION array, dimension ( M )
86              On entry, VL(1:NL+1) contains the  last components of all
87              right singular vectors of the upper block; and  VL(NL+2:M)  con‐
88              tains  the  last components of all right singular vectors of the
89              lower block. On exit, VL contains the  last  components  of  all
90              right singular vectors of the bidiagonal matrix.
91
92       VLW    (workspace) DOUBLE PRECISION array, dimension ( M )
93              Workspace for VL.
94
95       ALPHA  (input) DOUBLE PRECISION
96              Contains the diagonal element associated with the added row.
97
98       BETA   (input) DOUBLE PRECISION
99              Contains the off-diagonal element associated with the added row.
100
101              DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) Contains
102              a copy of the diagonal elements (K-1  singular  values  and  one
103              zero) in the secular equation.
104
105       IDX    (workspace) INTEGER array, dimension ( N )
106              This will contain the permutation used to sort the contents of D
107              into ascending order.
108
109       IDXP   (workspace) INTEGER array, dimension ( N )
110              This will contain the permutation used to place deflated  values
111              of D at the end of the array. On output IDXP(2:K)
112              points to the nondeflated D-values and IDXP(K+1:N) points to the
113              deflated singular values.
114
115       IDXQ   (input) INTEGER array, dimension ( N )
116              This contains the permutation which  separately  sorts  the  two
117              sub-problems  in  D  into ascending order.  Note that entries in
118              the first half of this permutation must first be moved one posi‐
119              tion  backward;  and  entries in the second half must first have
120              NL+1 added to their values.
121
122       PERM   (output) INTEGER array, dimension ( N )
123              The permutations (from deflation and sorting) to be  applied  to
124              each singular block. Not referenced if ICOMPQ = 0.
125
126              GIVPTR  (output)  INTEGER  The  number of Givens rotations which
127              took place in this subproblem. Not referenced if ICOMPQ = 0.
128
129              GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) Each pair
130              of numbers indicates a pair of columns to take place in a Givens
131              rotation. Not referenced if ICOMPQ = 0.
132
133              LDGCOL (input) INTEGER The leading dimension of GIVCOL, must  be
134              at least N.
135
136              GIVNUM  (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 )
137              Each number indicates the C or S value to be used in the  corre‐
138              sponding Givens rotation. Not referenced if ICOMPQ = 0.
139
140              LDGNUM  (input) INTEGER The leading dimension of GIVNUM, must be
141              at least N.
142
143       C      (output) DOUBLE PRECISION
144              C contains garbage if SQRE =0 and the C-value of a Givens  rota‐
145              tion related to the right null space if SQRE = 1.
146
147       S      (output) DOUBLE PRECISION
148              S  contains garbage if SQRE =0 and the S-value of a Givens rota‐
149              tion related to the right null space if SQRE = 1.
150
151       INFO   (output) INTEGER
152              = 0:  successful exit.
153              < 0:  if INFO = -i, the i-th argument had an illegal value.
154

FURTHER DETAILS

156       Based on contributions by
157          Ming Gu and Huan Ren, Computer Science Division, University of
158          California at Berkeley, USA
159
160
161
162
163 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       DLASD7(1)
Impressum