1DORMRZ(1)               LAPACK routine (version 3.1.1)               DORMRZ(1)
2
3
4

NAME

6       DORMRZ  - the general real M-by-N matrix C with   SIDE = 'L' SIDE = 'R'
7       TRANS = 'N'
8

SYNOPSIS

10       SUBROUTINE DORMRZ( SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC,  WORK,
11                          LWORK, INFO )
12
13           CHARACTER      SIDE, TRANS
14
15           INTEGER        INFO, K, L, LDA, LDC, LWORK, M, N
16
17           DOUBLE         PRECISION  A( LDA, * ), C( LDC, * ), TAU( * ), WORK(
18                          * )
19

PURPOSE

21       DORMRZ overwrites the general real M-by-N matrix C with  TRANS  =  'T':
22       Q**T * C       C * Q**T
23
24       where Q is a real orthogonal matrix defined as the product of k elemen‐
25       tary reflectors
26
27             Q = H(1) H(2) . . . H(k)
28
29       as returned by DTZRZF. Q is of order M if SIDE = 'L' and of order N  if
30       SIDE = 'R'.
31
32

ARGUMENTS

34       SIDE    (input) CHARACTER*1
35               = 'L': apply Q or Q**T from the Left;
36               = 'R': apply Q or Q**T from the Right.
37
38       TRANS   (input) CHARACTER*1
39               = 'N':  No transpose, apply Q;
40               = 'T':  Transpose, apply Q**T.
41
42       M       (input) INTEGER
43               The number of rows of the matrix C. M >= 0.
44
45       N       (input) INTEGER
46               The number of columns of the matrix C. N >= 0.
47
48       K       (input) INTEGER
49               The  number  of elementary reflectors whose product defines the
50               matrix Q.  If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >=
51               0.
52
53       L       (input) INTEGER
54               The number of columns of the matrix A containing the meaningful
55               part of the Householder reflectors.  If SIDE = 'L', M >=  L  >=
56               0, if SIDE = 'R', N >= L >= 0.
57
58       A       (input) DOUBLE PRECISION array, dimension
59               (LDA,M)  if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must
60               contain the vector which defines the elementary reflector H(i),
61               for  i = 1,2,...,k, as returned by DTZRZF in the last k rows of
62               its array argument  A.   A  is  modified  by  the  routine  but
63               restored on exit.
64
65       LDA     (input) INTEGER
66               The leading dimension of the array A. LDA >= max(1,K).
67
68       TAU     (input) DOUBLE PRECISION array, dimension (K)
69               TAU(i) must contain the scalar factor of the elementary reflec‐
70               tor H(i), as returned by DTZRZF.
71
72       C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
73               On entry, the M-by-N matrix C.  On exit, C  is  overwritten  by
74               Q*C or Q**H*C or C*Q**H or C*Q.
75
76       LDC     (input) INTEGER
77               The leading dimension of the array C. LDC >= max(1,M).
78
79       WORK       (workspace/output)   DOUBLE   PRECISION   array,   dimension
80       (MAX(1,LWORK))
81               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
82
83       LWORK   (input) INTEGER
84               The dimension of the array WORK.   If  SIDE  =  'L',  LWORK  >=
85               max(1,N);  if  SIDE = 'R', LWORK >= max(1,M).  For optimum per‐
86               formance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE
87               = 'R', where NB is the optimal blocksize.
88
89               If  LWORK  = -1, then a workspace query is assumed; the routine
90               only calculates the optimal size of  the  WORK  array,  returns
91               this  value  as the first entry of the WORK array, and no error
92               message related to LWORK is issued by XERBLA.
93
94       INFO    (output) INTEGER
95               = 0:  successful exit
96               < 0:  if INFO = -i, the i-th argument had an illegal value
97

FURTHER DETAILS

99       Based on contributions by
100         A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
101
102
103
104
105 LAPACK routine (version 3.1.1)  February 2007                       DORMRZ(1)
Impressum