1DPTTS2(1) LAPACK routine (version 3.1) DPTTS2(1)
2
3
4
6 DPTTS2 - a tridiagonal system of the form A * X = B using the L*D*L'
7 factorization of A computed by DPTTRF
8
10 SUBROUTINE DPTTS2( N, NRHS, D, E, B, LDB )
11
12 INTEGER LDB, N, NRHS
13
14 DOUBLE PRECISION B( LDB, * ), D( * ), E( * )
15
17 DPTTS2 solves a tridiagonal system of the form
18 A * X = B using the L*D*L' factorization of A computed by DPTTRF. D
19 is a diagonal matrix specified in the vector D, L is a unit bidiagonal
20 matrix whose subdiagonal is specified in the vector E, and X and B are
21 N by NRHS matrices.
22
23
25 N (input) INTEGER
26 The order of the tridiagonal matrix A. N >= 0.
27
28 NRHS (input) INTEGER
29 The number of right hand sides, i.e., the number of columns of
30 the matrix B. NRHS >= 0.
31
32 D (input) DOUBLE PRECISION array, dimension (N)
33 The n diagonal elements of the diagonal matrix D from the
34 L*D*L' factorization of A.
35
36 E (input) DOUBLE PRECISION array, dimension (N-1)
37 The (n-1) subdiagonal elements of the unit bidiagonal factor L
38 from the L*D*L' factorization of A. E can also be regarded as
39 the superdiagonal of the unit bidiagonal factor U from the fac‐
40 torization A = U'*D*U.
41
42 B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
43 On entry, the right hand side vectors B for the system of lin‐
44 ear equations. On exit, the solution vectors, X.
45
46 LDB (input) INTEGER
47 The leading dimension of the array B. LDB >= max(1,N).
48
49
50
51 LAPACK routine (version 3.1) November 2006 DPTTS2(1)