1DSYRK(1)                         BLAS routine                         DSYRK(1)
2
3
4

NAME

6       DSYRK  -  one  of  the  symmetric rank k operations   C := alpha*A*A' +
7       beta*C,
8

SYNOPSIS

10       SUBROUTINE DSYRK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC)
11
12           DOUBLE                                              PRECISION
13                                                               ALPHA,BETA
14
15           INTEGER                                             K,LDA,LDC,N
16
17           CHARACTER                                           TRANS,UPLO
18
19           DOUBLE                                              PRECISION
20                                                               A(LDA,*),C(LDC,*)
21

PURPOSE

23       DSYRK  performs one of the symmetric rank k operations
24
25       or
26
27          C := alpha*A'*A + beta*C,
28
29       where   alpha  and beta  are scalars, C is an  n by n  symmetric matrix
30       and  A  is an  n by k  matrix in the first case and a  k by  n   matrix
31       in the second case.
32
33

ARGUMENTS

35       UPLO   - CHARACTER*1.
36              On   entry,    UPLO   specifies   whether  the  upper  or  lower
37              triangular  part  of the  array  C  is  to  be   referenced   as
38              follows:
39
40              UPLO  = 'U' or 'u'   Only the  upper triangular part of  C is to
41              be referenced.
42
43              UPLO = 'L' or 'l'   Only the  lower triangular part of  C is  to
44              be referenced.
45
46              Unchanged on exit.
47
48       TRANS  - CHARACTER*1.
49              On  entry,   TRANS   specifies  the operation to be performed as
50              follows:
51
52              TRANS = 'N' or 'n'   C := alpha*A*A' + beta*C.
53
54              TRANS = 'T' or 't'   C := alpha*A'*A + beta*C.
55
56              TRANS = 'C' or 'c'   C := alpha*A'*A + beta*C.
57
58              Unchanged on exit.
59
60       N      - INTEGER.
61              On entry,  N specifies the order of the matrix C.  N must be  at
62              least zero.  Unchanged on exit.
63
64       K      - INTEGER.
65              On  entry with  TRANS = 'N' or 'n',  K  specifies  the number of
66              columns   of  the   matrix   A,   and  on   entry   with TRANS =
67              'T'  or 't' or 'C' or 'c',  K  specifies  the  number of rows of
68              the matrix  A.  K must be at least zero.  Unchanged on exit.
69
70       ALPHA  - DOUBLE PRECISION.
71              On entry, ALPHA specifies the scalar alpha.  Unchanged on exit.
72
73       A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
74              k  when  TRANS = 'N' or 'n',   and  is   n   otherwise.   Before
75              entry  with   TRANS  = 'N' or 'n',  the  leading  n by k part of
76              the array  A  must contain the matrix  A,  otherwise the leading
77              k  by  n   part  of  the  array   A  must contain  the matrix A.
78              Unchanged on exit.
79
80       LDA    - INTEGER.
81              On entry, LDA specifies the first dimension of A as declared  in
82              the   calling   (sub)   program.   When  TRANS = 'N' or 'n' then
83              LDA must be at least  max( 1, n ), otherwise   LDA  must  be  at
84              least  max( 1, k ).  Unchanged on exit.
85
86       BETA   - DOUBLE PRECISION.
87              On entry, BETA specifies the scalar beta.  Unchanged on exit.
88
89       C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
90              Before  entry   with   UPLO  =  'U' or 'u',  the leading  n by n
91              upper triangular part of the array C must contain the upper tri‐
92              angular  part   of the  symmetric matrix  and the strictly lower
93              triangular part of C is not referenced.  On exit, the upper tri‐
94              angular  part of the array  C is overwritten by the upper trian‐
95              gular part of the updated matrix.  Before entry   with   UPLO  =
96              'L'  or  'l',   the leading  n by n lower triangular part of the
97              array C must contain the lower triangular part  of the   symmet‐
98              ric  matrix   and the strictly upper triangular part of C is not
99              referenced.  On exit, the lower triangular part of the array   C
100              is  overwritten  by  the  lower  triangular  part of the updated
101              matrix.
102
103       LDC    - INTEGER.
104              On entry, LDC specifies the first dimension of C as declared  in
105              the  calling  (sub)  program.   LDC  must  be  at  least max( 1,
106              n ).  Unchanged on exit.
107
108              Level 3 Blas routine.
109
110              -- Written on 8-February-1989.  Jack Dongarra, Argonne  National
111              Laboratory.  Iain Duff, AERE Harwell.  Jeremy Du Croz, Numerical
112              Algorithms Group Ltd.   Sven  Hammarling,  Numerical  Algorithms
113              Group Ltd.
114
115
116
117
118
119
120BLAS routine                     November 2006                        DSYRK(1)
Impressum