1DTGEXC(1)                LAPACK routine (version 3.1)                DTGEXC(1)
2
3
4

NAME

6       DTGEXC - the generalized real Schur decomposition of a real matrix pair
7       (A,B) using an orthogonal equivalence transformation   (A, B) = Q * (A,
8       B) * Z',
9

SYNOPSIS

11       SUBROUTINE DTGEXC( WANTQ,  WANTZ,  N,  A,  LDA, B, LDB, Q, LDQ, Z, LDZ,
12                          IFST, ILST, WORK, LWORK, INFO )
13
14           LOGICAL        WANTQ, WANTZ
15
16           INTEGER        IFST, ILST, INFO, LDA, LDB, LDQ, LDZ, LWORK, N
17
18           DOUBLE         PRECISION A( LDA, * ), B( LDB, * ),  Q(  LDQ,  *  ),
19                          WORK( * ), Z( LDZ, * )
20

PURPOSE

22       DTGEXC  reorders  the  generalized  real  Schur decomposition of a real
23       matrix pair (A,B) using an orthogonal equivalence transformation
24
25       so that the diagonal block of (A, B) with row index IFST  is  moved  to
26       row ILST.
27
28       (A, B) must be in generalized real Schur canonical form (as returned by
29       DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2  diago‐
30       nal blocks. B is upper triangular.
31
32       Optionally,  the  matrices  Q  and  Z  of generalized Schur vectors are
33       updated.
34
35              Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
36              Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
37
38
39

ARGUMENTS

41       WANTQ   (input) LOGICAL
42
43       WANTZ   (input) LOGICAL
44
45       N       (input) INTEGER
46               The order of the matrices A and B. N >= 0.
47
48       A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
49               On entry, the matrix A  in  generalized  real  Schur  canonical
50               form.  On exit, the updated matrix A, again in generalized real
51               Schur canonical form.
52
53       LDA     (input)  INTEGER
54               The leading dimension of the array A. LDA >= max(1,N).
55
56       B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
57               On entry, the matrix B in generalized real Schur canonical form
58               (A,B).   On  exit,  the  updated matrix B, again in generalized
59               real Schur canonical form (A,B).
60
61       LDB     (input)  INTEGER
62               The leading dimension of the array B. LDB >= max(1,N).
63
64       Q       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
65               On entry, if WANTQ = .TRUE., the orthogonal matrix Q.  On exit,
66               the updated matrix Q.  If WANTQ = .FALSE., Q is not referenced.
67
68       LDQ     (input) INTEGER
69               The  leading  dimension  of  the array Q. LDQ >= 1.  If WANTQ =
70               .TRUE., LDQ >= N.
71
72       Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
73               On entry, if WANTZ = .TRUE., the orthogonal matrix Z.  On exit,
74               the updated matrix Z.  If WANTZ = .FALSE., Z is not referenced.
75
76       LDZ     (input) INTEGER
77               The  leading  dimension  of  the array Z. LDZ >= 1.  If WANTZ =
78               .TRUE., LDZ >= N.
79
80       IFST    (input/output) INTEGER
81               ILST    (input/output) INTEGER Specify the  reordering  of  the
82               diagonal  blocks  of  (A, B).  The block with row index IFST is
83               moved to row ILST, by a sequence of swapping  between  adjacent
84               blocks.  On exit, if IFST pointed on entry to the second row of
85               a 2-by-2 block, it is changed to point to the first  row;  ILST
86               always  points to the first row of the block in its final posi‐
87               tion (which may differ from its input value by +1 or -1). 1  <=
88               IFST, ILST <= N.
89
90       WORK       (workspace/output)   DOUBLE   PRECISION   array,   dimension
91       (MAX(1,LWORK))
92               On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
93
94       LWORK   (input) INTEGER
95               The dimension of the array WORK.  LWORK >= 1 when N <= 1,  oth‐
96               erwise LWORK >= 4*N + 16.
97
98               If  LWORK  = -1, then a workspace query is assumed; the routine
99               only calculates the optimal size of  the  WORK  array,  returns
100               this  value  as the first entry of the WORK array, and no error
101               message related to LWORK is issued by XERBLA.
102
103       INFO    (output) INTEGER
104               =0:  successful exit.
105               <0:  if INFO = -i, the i-th argument had an illegal value.
106               =1:  The transformed matrix pair (A, B) would be too  far  from
107               generalized Schur form; the problem is ill- conditioned. (A, B)
108               may have been partially reordered, and ILST points to the first
109               row of the current position of the block being moved.
110

FURTHER DETAILS

112       Based on contributions by
113          Bo Kagstrom and Peter Poromaa, Department of Computing Science,
114          Umea University, S-901 87 Umea, Sweden.
115
116       [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
117           Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
118           M.S. Moonen et al (eds), Linear Algebra for Large Scale and
119           Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
120
121
122
123
124 LAPACK routine (version 3.1)    November 2006                       DTGEXC(1)
Impressum