1SGEBAK(1) LAPACK routine (version 3.1) SGEBAK(1)
2
3
4
6 SGEBAK - the right or left eigenvectors of a real general matrix by
7 backward transformation on the computed eigenvectors of the balanced
8 matrix output by SGEBAL
9
11 SUBROUTINE SGEBAK( JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO )
12
13 CHARACTER JOB, SIDE
14
15 INTEGER IHI, ILO, INFO, LDV, M, N
16
17 REAL V( LDV, * ), SCALE( * )
18
20 SGEBAK forms the right or left eigenvectors of a real general matrix by
21 backward transformation on the computed eigenvectors of the balanced
22 matrix output by SGEBAL.
23
24
26 JOB (input) CHARACTER*1
27 Specifies the type of backward transformation required: = 'N',
28 do nothing, return immediately; = 'P', do backward transforma‐
29 tion for permutation only; = 'S', do backward transformation
30 for scaling only; = 'B', do backward transformations for both
31 permutation and scaling. JOB must be the same as the argument
32 JOB supplied to SGEBAL.
33
34 SIDE (input) CHARACTER*1
35 = 'R': V contains right eigenvectors;
36 = 'L': V contains left eigenvectors.
37
38 N (input) INTEGER
39 The number of rows of the matrix V. N >= 0.
40
41 ILO (input) INTEGER
42 IHI (input) INTEGER The integers ILO and IHI determined by
43 SGEBAL. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if
44 N=0.
45
46 SCALE (input) REAL array, dimension (N)
47 Details of the permutation and scaling factors, as returned by
48 SGEBAL.
49
50 M (input) INTEGER
51 The number of columns of the matrix V. M >= 0.
52
53 V (input/output) REAL array, dimension (LDV,M)
54 On entry, the matrix of right or left eigenvectors to be trans‐
55 formed, as returned by SHSEIN or STREVC. On exit, V is over‐
56 written by the transformed eigenvectors.
57
58 LDV (input) INTEGER
59 The leading dimension of the array V. LDV >= max(1,N).
60
61 INFO (output) INTEGER
62 = 0: successful exit
63 < 0: if INFO = -i, the i-th argument had an illegal value.
64
65
66
67 LAPACK routine (version 3.1) November 2006 SGEBAK(1)