1SLACON(1)           LAPACK auxiliary routine (version 3.1)           SLACON(1)
2
3
4

NAME

6       SLACON - the 1-norm of a square, real matrix A
7

SYNOPSIS

9       SUBROUTINE SLACON( N, V, X, ISGN, EST, KASE )
10
11           INTEGER        KASE, N
12
13           REAL           EST
14
15           INTEGER        ISGN( * )
16
17           REAL           V( * ), X( * )
18

PURPOSE

20       SLACON estimates the 1-norm of a square, real matrix A.  Reverse commu‐
21       nication is used for evaluating matrix-vector products.
22
23

ARGUMENTS

25       N      (input) INTEGER
26              The order of the matrix.  N >= 1.
27
28       V      (workspace) REAL array, dimension (N)
29              On the final return, V = A*W,  where  EST =  norm(V)/norm(W)  (W
30              is not returned).
31
32       X      (input/output) REAL array, dimension (N)
33              On  an  intermediate  return,  X should be overwritten by A * X,
34              if KASE=1, A' * X,  if KASE=2, and SLACON must be re-called with
35              all the other parameters unchanged.
36
37       ISGN   (workspace) INTEGER array, dimension (N)
38
39       EST    (input/output) REAL
40              On  entry  with  KASE  =  1  or  2  and  JUMP = 3, EST should be
41              unchanged from the previous call to SLACON.  On exit, EST is  an
42              estimate (a lower bound) for norm(A).
43
44       KASE   (input/output) INTEGER
45              On the initial call to SLACON, KASE should be 0.  On an interme‐
46              diate return, KASE will be 1 or 2, indicating whether  X  should
47              be  overwritten  by  A * X  or A' * X.  On the final return from
48              SLACON, KASE will again be 0.
49

FURTHER DETAILS

51       Contributed by Nick Higham, University of Manchester.
52       Originally named SONEST, dated March 16, 1988.
53
54       Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of a
55       real or complex matrix, with applications to condition estimation", ACM
56       Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
57
58
59
60
61 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                       SLACON(1)
Impressum