1SLAGS2(1) LAPACK auxiliary routine (version 3.1) SLAGS2(1)
2
3
4
6 SLAGS2 - 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER )
7 then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q
8 = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then
9 U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*(
10 B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A
11 and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ
12 SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose
13 of Z
14
16 SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV,
17 CSQ, SNQ )
18
19 LOGICAL UPPER
20
21 REAL A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ, SNU, SNV
22
24 SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if (
25 UPPER ) then
26
27
28
30 UPPER (input) LOGICAL
31 = .TRUE.: the input matrices A and B are upper triangular.
32 = .FALSE.: the input matrices A and B are lower triangular.
33
34 A1 (input) REAL
35 A2 (input) REAL A3 (input) REAL On entry, A1, A2 and
36 A3 are elements of the input 2-by-2 upper (lower) triangular
37 matrix A.
38
39 B1 (input) REAL
40 B2 (input) REAL B3 (input) REAL On entry, B1, B2 and
41 B3 are elements of the input 2-by-2 upper (lower) triangular
42 matrix B.
43
44 CSU (output) REAL
45 SNU (output) REAL The desired orthogonal matrix U.
46
47 CSV (output) REAL
48 SNV (output) REAL The desired orthogonal matrix V.
49
50 CSQ (output) REAL
51 SNQ (output) REAL The desired orthogonal matrix Q.
52
53
54
55 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 SLAGS2(1)