1SLAQP2(1) LAPACK auxiliary routine (version 3.1) SLAQP2(1)
2
3
4
6 SLAQP2 - a QR factorization with column pivoting of the block A(OFF‐
7 SET+1:M,1:N)
8
10 SUBROUTINE SLAQP2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK )
11
12 INTEGER LDA, M, N, OFFSET
13
14 INTEGER JPVT( * )
15
16 REAL A( LDA, * ), TAU( * ), VN1( * ), VN2( * ), WORK( * )
17
19 SLAQP2 computes a QR factorization with column pivoting of the block
20 A(OFFSET+1:M,1:N). The block A(1:OFFSET,1:N) is accordingly pivoted,
21 but not factorized.
22
23
25 M (input) INTEGER
26 The number of rows of the matrix A. M >= 0.
27
28 N (input) INTEGER
29 The number of columns of the matrix A. N >= 0.
30
31 OFFSET (input) INTEGER
32 The number of rows of the matrix A that must be pivoted but no
33 factorized. OFFSET >= 0.
34
35 A (input/output) REAL array, dimension (LDA,N)
36 On entry, the M-by-N matrix A. On exit, the upper triangle of
37 block A(OFFSET+1:M,1:N) is the triangular factor obtained; the
38 elements in block A(OFFSET+1:M,1:N) below the diagonal,
39 together with the array TAU, represent the orthogonal matrix Q
40 as a product of elementary reflectors. Block A(1:OFFSET,1:N)
41 has been accordingly pivoted, but no factorized.
42
43 LDA (input) INTEGER
44 The leading dimension of the array A. LDA >= max(1,M).
45
46 JPVT (input/output) INTEGER array, dimension (N)
47 On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
48 to the front of A*P (a leading column); if JPVT(i) = 0, the i-
49 th column of A is a free column. On exit, if JPVT(i) = k, then
50 the i-th column of A*P was the k-th column of A.
51
52 TAU (output) REAL array, dimension (min(M,N))
53 The scalar factors of the elementary reflectors.
54
55 VN1 (input/output) REAL array, dimension (N)
56 The vector with the partial column norms.
57
58 VN2 (input/output) REAL array, dimension (N)
59 The vector with the exact column norms.
60
61 WORK (workspace) REAL array, dimension (N)
62
64 Based on contributions by
65 G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
66 X. Sun, Computer Science Dept., Duke University, USA
67
68 Partial column norm updating strategy modified by
69 Z. Drmac and Z. Bujanovic, Dept. of Mathematics,
70 University of Zagreb, Croatia.
71 June 2006.
72 For more details see LAPACK Working Note 176.
73
74
75
76 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 SLAQP2(1)