1SLASR(1)            LAPACK auxiliary routine (version 3.1)            SLASR(1)
2
3
4

NAME

6       SLASR - a sequence of plane rotations to a real matrix A,
7

SYNOPSIS

9       SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
10
11           CHARACTER     DIRECT, PIVOT, SIDE
12
13           INTEGER       LDA, M, N
14
15           REAL          A( LDA, * ), C( * ), S( * )
16

PURPOSE

18       SLASR  applies  a  sequence of plane rotations to a real matrix A, from
19       either the left or the right.
20
21       When SIDE = 'L', the transformation takes the form
22
23          A := P*A
24
25       and when SIDE = 'R', the transformation takes the form
26
27          A := A*P**T
28
29       where P is an orthogonal matrix consisting of a  sequence  of  z  plane
30       rotations,  with  z  = M when SIDE = 'L' and z = N when SIDE = 'R', and
31       P**T is the transpose of P.
32
33       When DIRECT = 'F' (Forward sequence), then
34
35          P = P(z-1) * ... * P(2) * P(1)
36
37       and when DIRECT = 'B' (Backward sequence), then
38
39          P = P(1) * P(2) * ... * P(z-1)
40
41       where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
42
43          R(k) = (  c(k)  s(k) )
44               = ( -s(k)  c(k) ).
45
46       When PIVOT = 'V' (Variable pivot), the rotation is  performed  for  the
47       plane (k,k+1), i.e., P(k) has the form
48
49          P(k) = (  1                                            )
50                 (       ...                                     )
51                 (              1                                )
52                 (                   c(k)  s(k)                  )
53                 (                  -s(k)  c(k)                  )
54                 (                                1              )
55                 (                                     ...       )
56                 (                                            1  )
57
58       where  R(k)  appears as a rank-2 modification to the identity matrix in
59       rows and columns k and k+1.
60
61       When PIVOT = 'T' (Top pivot), the rotation is performed for  the  plane
62       (1,k+1), so P(k) has the form
63
64          P(k) = (  c(k)                    s(k)                 )
65                 (         1                                     )
66                 (              ...                              )
67                 (                     1                         )
68                 ( -s(k)                    c(k)                 )
69                 (                                 1             )
70                 (                                      ...      )
71                 (                                             1 )
72
73       where R(k) appears in rows and columns 1 and k+1.
74
75       Similarly,  when  PIVOT = 'B' (Bottom pivot), the rotation is performed
76       for the plane (k,z), giving P(k) the form
77
78          P(k) = ( 1                                             )
79                 (      ...                                      )
80                 (             1                                 )
81                 (                  c(k)                    s(k) )
82                 (                         1                     )
83                 (                              ...              )
84                 (                                     1         )
85                 (                 -s(k)                    c(k) )
86
87       where R(k) appears in rows and columns k and z.  The rotations are per‐
88       formed without ever forming P(k) explicitly.
89
90

ARGUMENTS

92       SIDE    (input) CHARACTER*1
93               Specifies  whether  the plane rotation matrix P is applied to A
94               on the left or the right.  = 'L':  Left, compute A := P*A
95               = 'R':  Right, compute A:= A*P**T
96
97       PIVOT   (input) CHARACTER*1
98               Specifies the plane for which P(k) is a plane rotation  matrix.
99               = 'V':  Variable pivot, the plane (k,k+1)
100               = 'T':  Top pivot, the plane (1,k+1)
101               = 'B':  Bottom pivot, the plane (k,z)
102
103       DIRECT  (input) CHARACTER*1
104               Specifies  whether P is a forward or backward sequence of plane
105               rotations.  = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
106               = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
107
108       M       (input) INTEGER
109               The number of rows of the matrix A.  If m <=  1,  an  immediate
110               return is effected.
111
112       N       (input) INTEGER
113               The number of columns of the matrix A.  If n <= 1, an immediate
114               return is effected.
115
116       C       (input) REAL array, dimension
117               (M-1) if SIDE = 'L' (N-1) if SIDE = 'R' The cosines c(k) of the
118               plane rotations.
119
120       S       (input) REAL array, dimension
121               (M-1)  if  SIDE = 'L' (N-1) if SIDE = 'R' The sines s(k) of the
122               plane rotations.  The 2-by-2 plane rotation part of the  matrix
123               P(k),  R(k),  has the form R(k) = (  c(k)  s(k) ) ( -s(k)  c(k)
124               ).
125
126       A       (input/output) REAL array, dimension (LDA,N)
127               The M-by-N matrix A.  On exit, A is overwritten by P*A if  SIDE
128               = 'R' or by A*P**T if SIDE = 'L'.
129
130       LDA     (input) INTEGER
131               The leading dimension of the array A.  LDA >= max(1,M).
132
133
134
135 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006                        SLASR(1)
Impressum