1SORGL2(1) LAPACK routine (version 3.1) SORGL2(1)
2
3
4
6 SORGL2 - an m by n real matrix Q with orthonormal rows,
7
9 SUBROUTINE SORGL2( M, N, K, A, LDA, TAU, WORK, INFO )
10
11 INTEGER INFO, K, LDA, M, N
12
13 REAL A( LDA, * ), TAU( * ), WORK( * )
14
16 SORGL2 generates an m by n real matrix Q with orthonormal rows, which
17 is defined as the first m rows of a product of k elementary reflectors
18 of order n
19
20 Q = H(k) . . . H(2) H(1)
21
22 as returned by SGELQF.
23
24
26 M (input) INTEGER
27 The number of rows of the matrix Q. M >= 0.
28
29 N (input) INTEGER
30 The number of columns of the matrix Q. N >= M.
31
32 K (input) INTEGER
33 The number of elementary reflectors whose product defines the
34 matrix Q. M >= K >= 0.
35
36 A (input/output) REAL array, dimension (LDA,N)
37 On entry, the i-th row must contain the vector which defines
38 the elementary reflector H(i), for i = 1,2,...,k, as returned
39 by SGELQF in the first k rows of its array argument A. On
40 exit, the m-by-n matrix Q.
41
42 LDA (input) INTEGER
43 The first dimension of the array A. LDA >= max(1,M).
44
45 TAU (input) REAL array, dimension (K)
46 TAU(i) must contain the scalar factor of the elementary reflecā
47 tor H(i), as returned by SGELQF.
48
49 WORK (workspace) REAL array, dimension (M)
50
51 INFO (output) INTEGER
52 = 0: successful exit
53 < 0: if INFO = -i, the i-th argument has an illegal value
54
55
56
57 LAPACK routine (version 3.1) November 2006 SORGL2(1)