1SSTEVX(1)             LAPACK driver routine (version 3.1)            SSTEVX(1)
2
3
4

NAME

6       SSTEVX  -  selected eigenvalues and, optionally, eigenvectors of a real
7       symmetric tridiagonal matrix A
8

SYNOPSIS

10       SUBROUTINE SSTEVX( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL, M,  W,
11                          Z, LDZ, WORK, IWORK, IFAIL, INFO )
12
13           CHARACTER      JOBZ, RANGE
14
15           INTEGER        IL, INFO, IU, LDZ, M, N
16
17           REAL           ABSTOL, VL, VU
18
19           INTEGER        IFAIL( * ), IWORK( * )
20
21           REAL           D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
22

PURPOSE

24       SSTEVX computes selected eigenvalues and, optionally, eigenvectors of a
25       real symmetric tridiagonal matrix A.  Eigenvalues and eigenvectors  can
26       be  selected  by  specifying  either  a  range  of values or a range of
27       indices for the desired eigenvalues.
28
29

ARGUMENTS

31       JOBZ    (input) CHARACTER*1
32               = 'N':  Compute eigenvalues only;
33               = 'V':  Compute eigenvalues and eigenvectors.
34
35       RANGE   (input) CHARACTER*1
36               = 'A': all eigenvalues will be found.
37               = 'V': all eigenvalues in the half-open interval  (VL,VU]  will
38               be  found.   = 'I': the IL-th through IU-th eigenvalues will be
39               found.
40
41       N       (input) INTEGER
42               The order of the matrix.  N >= 0.
43
44       D       (input/output) REAL array, dimension (N)
45               On entry, the n diagonal elements of the tridiagonal matrix  A.
46               On  exit,  D  may  be multiplied by a constant factor chosen to
47               avoid over/underflow in computing the eigenvalues.
48
49       E       (input/output) REAL array, dimension (max(1,N-1))
50               On entry, the (n-1) subdiagonal  elements  of  the  tridiagonal
51               matrix  A  in elements 1 to N-1 of E.  On exit, E may be multi‐
52               plied by a constant factor chosen to  avoid  over/underflow  in
53               computing the eigenvalues.
54
55       VL      (input) REAL
56               VU       (input)  REAL If RANGE='V', the lower and upper bounds
57               of the interval to be searched for eigenvalues. VL <  VU.   Not
58               referenced if RANGE = 'A' or 'I'.
59
60       IL      (input) INTEGER
61               IU      (input) INTEGER If RANGE='I', the indices (in ascending
62               order) of the smallest and largest eigenvalues to be  returned.
63               1  <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.  Not
64               referenced if RANGE = 'A' or 'V'.
65
66       ABSTOL  (input) REAL
67               The absolute error tolerance for the eigenvalues.  An  approxi‐
68               mate  eigenvalue is accepted as converged when it is determined
69               to lie in an interval [a,b] of width less than or equal to
70
71               ABSTOL + EPS *   max( |a|,|b| ) ,
72
73               where EPS is the machine precision.  If ABSTOL is less than  or
74               equal  to zero, then  EPS*|T|  will be used in its place, where
75               |T| is the 1-norm of the tridiagonal matrix.
76
77               Eigenvalues will be computed most accurately when ABSTOL is set
78               to  twice  the underflow threshold 2*SLAMCH('S'), not zero.  If
79               this routine returns with INFO>0, indicating that  some  eigen‐
80               vectors did not converge, try setting ABSTOL to 2*SLAMCH('S').
81
82               See  "Computing  Small  Singular  Values of Bidiagonal Matrices
83               with Guaranteed High Relative Accuracy," by Demmel  and  Kahan,
84               LAPACK Working Note #3.
85
86       M       (output) INTEGER
87               The  total number of eigenvalues found.  0 <= M <= N.  If RANGE
88               = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
89
90       W       (output) REAL array, dimension (N)
91               The first  M  elements  contain  the  selected  eigenvalues  in
92               ascending order.
93
94       Z       (output) REAL array, dimension (LDZ, max(1,M) )
95               If  JOBZ = 'V', then if INFO = 0, the first M columns of Z con‐
96               tain the orthonormal eigenvectors of the matrix A corresponding
97               to  the selected eigenvalues, with the i-th column of Z holding
98               the eigenvector associated with W(i).  If an eigenvector  fails
99               to converge (INFO > 0), then that column of Z contains the lat‐
100               est approximation to the eigenvector,  and  the  index  of  the
101               eigenvector is returned in IFAIL.  If JOBZ = 'N', then Z is not
102               referenced.  Note: the user must ensure that at least  max(1,M)
103               columns  are supplied in the array Z; if RANGE = 'V', the exact
104               value of M is not known in advance and an upper bound  must  be
105               used.
106
107       LDZ     (input) INTEGER
108               The  leading dimension of the array Z.  LDZ >= 1, and if JOBZ =
109               'V', LDZ >= max(1,N).
110
111       WORK    (workspace) REAL array, dimension (5*N)
112
113       IWORK   (workspace) INTEGER array, dimension (5*N)
114
115       IFAIL   (output) INTEGER array, dimension (N)
116               If JOBZ = 'V', then if INFO = 0, the first M elements of  IFAIL
117               are  zero.  If INFO > 0, then IFAIL contains the indices of the
118               eigenvectors that failed to converge.   If  JOBZ  =  'N',  then
119               IFAIL is not referenced.
120
121       INFO    (output) INTEGER
122               = 0:  successful exit
123               < 0:  if INFO = -i, the i-th argument had an illegal value
124               >  0:   if  INFO  =  i, then i eigenvectors failed to converge.
125               Their indices are stored in array IFAIL.
126
127
128
129 LAPACK driver routine (version 3.N1o)vember 2006                       SSTEVX(1)
Impressum