1ZGESC2(1) LAPACK auxiliary routine (version 3.1) ZGESC2(1)
2
3
4
6 ZGESC2 - a system of linear equations A * X = scale* RHS with a gen‐
7 eral N-by-N matrix A using the LU factorization with complete pivoting
8 computed by ZGETC2
9
11 SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
12
13 INTEGER LDA, N
14
15 DOUBLE PRECISION SCALE
16
17 INTEGER IPIV( * ), JPIV( * )
18
19 COMPLEX*16 A( LDA, * ), RHS( * )
20
22 ZGESC2 solves a system of linear equations
23
24
25
27 N (input) INTEGER
28 The number of columns of the matrix A.
29
30 A (input) COMPLEX*16 array, dimension (LDA, N)
31 On entry, the LU part of the factorization of the n-by-n
32 matrix A computed by ZGETC2: A = P * L * U * Q
33
34 LDA (input) INTEGER
35 The leading dimension of the array A. LDA >= max(1, N).
36
37 RHS (input/output) COMPLEX*16 array, dimension N.
38 On entry, the right hand side vector b. On exit, the solution
39 vector X.
40
41 IPIV (input) INTEGER array, dimension (N).
42 The pivot indices; for 1 <= i <= N, row i of the matrix has
43 been interchanged with row IPIV(i).
44
45 JPIV (input) INTEGER array, dimension (N).
46 The pivot indices; for 1 <= j <= N, column j of the matrix has
47 been interchanged with column JPIV(j).
48
49 SCALE (output) DOUBLE PRECISION
50 On exit, SCALE contains the scale factor. SCALE is chosen 0 <=
51 SCALE <= 1 to prevent owerflow in the solution.
52
54 Based on contributions by
55 Bo Kagstrom and Peter Poromaa, Department of Computing Science,
56 Umea University, S-901 87 Umea, Sweden.
57
58
59
60
61 LAPACK auxiliary routine (versionNo3v.e1m)ber 2006 ZGESC2(1)